
Master’s Thesis

oPage
Framework for Web based Content Management

Systems

carried out at the

Information Systems Institute
Distributed Systems Group

Technical University of Vienna

under the guidance of

Priv.-Doz. Dipl.-Ing. Dr.techn. Engin Kirda

by

Johannes Dorn
Weintraubengasse 7/4, A-1020 Vienna

Matr.Nr. 9326012

Vienna, 28th of February, 2008

Acknowledgements

I like to thank my advisor Priv.-Doz. Dipl.-Ing. Dr.techn. Engin Kirda, who has been a great help for me to
improve my thesis, and was very generous every time I missed my deadline.

I owe a great deal to Gernot Ihrybauer for his creative input in the design process of oPage and for the
lasting friendship. I still remember our tempered discussions at the Extone.

I have to thank my customers and the users of the oPage framework for their feedback and support.

Special thanks also go to Dr. Eva Ptak for her wise and humorous advocacies.

If you have troubles writing, visit the writers’ studio of Mag. Judith Wolfsberger or one of her courses. Her
advices made writing my thesis less complicated.

I am deeply grateful to my beloved girlfriend Christine, who encouraged and pushed me to complete this
master thesis and finish my studies. I am sure, I would not have accomplished it without her sympathy and
her support. And I would have a lot more misspellings in my thesis.

A big “hello, I did it” goes out to my parents and all my former school mates and university colleagues. Yes,
I did it. Yes! Yes! Yes!

Hannes Dorn
Vienna, Austria, February 2008

Abstract

oPage is a framework for developing Web based content management systems. It is more specific than a
general purpose framework like ASP.NET, but more flexible than content management systems like TYPO3
or Joomla!.

Web sites using oPage can run on every platform, where both PHP and MySQL are available, and are divided
into the core system, the backend and the frontend. The core system contains the framework base classes
and can be shared among different projects. The backend provides the user interface for administering the
Web site and managing the content. The frontend is individually created for each Web site and can be
customized and extended as needed.

oPage uses a database access layer and modules to store the content. For each type of structured content, a
module class is used. Modules can be combined to represent the database structure and provide operations
to create, retrieve, update and delete records and also operate as a report generator. The user interface can be
extended by navigation, pager and form controls. In the controller script, the module and control objects are
tied together. The content is queried with the module and merged with the template engine, which renders
the output using page and content layout templates.

The robust infrastructure, the versatile template engine, the structured backend and the provided modules
and controls make oPage a good foundation for Web sites.

BibTeX

@mastersthesis

{

opage,

author = "Hannes Dorn",

title = "oPage - Framework for Web based Content Management Systems",

school = "Technical University of Vienna",

year = "2008",

month = "February",

address = "Vienna, Austria"

}

i

ii

Zusammenfassung

oPage ist ein Basissystem (Framework) für die Entwicklung von Web-basierten Content Management
Systemen. Es ist spezifischer als ein allgemeines Framework wie ASP.NET, aber flexibler als Content
Management Systeme wie TYPO3 oder Joomla!.

Websites, die oPage verwenden, können auf allen Betriebssystemen laufen, für die PHP und MySQL
verfügbar ist, und sind unterteilt in einen System-Kern, das Backend und das Frontend. Der System-Kern
enthält die Basisystemklassen und kann in beliebigen Projekten verwendet werden. Das Backend stellt die
Benutzeroberfläche für die Verwaltung der Website und die Bearbeitung des Inhalts zur Verfügung. Das
Frontend wird für jede Website individuell erstellt und kann entsprechend angepaßt und erweitert werden.

oPage verwendet eine Datenbank-Abstraktions-Schicht und Module zum Speichern des Inhalts. Für jeden
Inhaltstyp wird eine eigene Modulklasse verwendet. Um die Datenbankstruktur abzubilden, können Mod-
ule auch verschachtelt werden. Die Modul-Basisklasse stellt Methoden zum Erzeugen, Lesen, Aktualisieren
und Löschen von Datensätzen bereit und arbeitet auch als Report-Generator. Die Benutzeroberfläche kann
mit Navigations–, Pager- und Formular-Elementen (Controls) erweitert werden. Im Ausgabeprogramm
(Controller) werden die Modul- und Control-Objekte zusammengefügt. Der Datenbankinhalt wird mit
den Modulen gelesen und an die Vorlagen-Verarbeitung (Template Engine) übergeben, die eine Webseite
basierend auf Seiten- und Inhaltsvorlagen erstellt.

Die robuste Infrastruktur, die flexible Template Engine, das strukturierte Backend und die zur Verfügung
gestellten Module und Controls machen oPage zu einer guten Basis für Websites.

BibTeX

@mastersthesis

{

opage,

author = "Hannes Dorn",

title = "oPage - Framework for Web based Content Management Systems",

school = "Technische Universität Wien",

year = "2008",

month = "Februar",

address = "Wien, Österreich"

}

iii

iv

Contents

1 Introduction 1
1.1 Internet Services . 1
1.2 Web Terminology . 2
1.3 Motivation . 4
1.4 Problem Definition . 6
1.5 Organisation of this thesis . 7

2 Web Content Management Systems 9
2.1 Content Management . 9
2.2 What is a WCMS . 10
2.3 WCMS roles . 13
2.4 WCMS functions . 13
2.5 Web Content management systems . 20
2.6 Goals for oPage . 32
2.7 Summary . 33

3 oPage Framework 35
3.1 Structure . 35
3.2 Website . 36
3.3 oPage Core . 39
3.4 The factory class . 50
3.5 The template engine . 53
3.6 CContent, a generic content module . 60
3.7 CApp . 63
3.8 CModul . 64
3.9 CPage . 73
3.10 CWebpage . 73
3.11 CControl . 75
3.12 CNavigation . 75
3.13 CMail . 78
3.14 CForm . 80
3.15 CPager . 83
3.16 Administration . 85
3.17 Advanced topics . 96
3.18 Summary . 107

4 Evaluation 109
4.1 Operating system . 109
4.2 Installation . 109
4.3 Web compatibility . 109
4.4 Search engine optimization . 109
4.5 User interface . 110
4.6 User management . 110
4.7 Security . 110
4.8 Software architecture . 111
4.9 Application programming interface . 111
4.10 Performance . 111
4.11 Lessons learned . 112

5 Future Work 113
5.1 Installation . 113
5.2 Template Engine . 113
5.3 Multilanguage resources . 114
5.4 Automatic checking of external links . 114
5.5 Access statistics . 114

v

5.6 Plugin System . 114
5.7 Workflow . 115
5.8 Backend homepage . 115
5.9 Summery . 115

6 Conclusion 117

References 119

List of Tables 121

List of Figures 123

Listings 125

A Appendix 127
A.1 PHP . 127
A.2 Coding Standards . 127
A.3 Directory structure . 131
A.4 Administration interface templates . 133
A.5 CMS feature comparison . 137

B About the Author 151
B.1 Education . 151
B.2 Professional career . 151

vi

1 Introduction

Since the first Web site has been written by Tim Berners-Lee1 on November 13th in 1989 at the European
Organisation for Nuclear Research (CERN) and the development of the browser “Mosaic for X” by Marc
Andreessen and Eric Bina2 in 1993 the popularity of the Web rised tremendously. At the time of writing,
Netcraft3 reports 155,230,051 active Web sites.

The first generation of Web sites just consisted of a few static HTML pages. A Web master created those
pages by hand or by using an HTML editor program. Over time more and more pages were added and
management of the Web site became complex. Design changes had to be applied on every single page and
editing could only be done by the Web master, who became more and more a bottleneck, so Web site owners
started demanding to update the Web site by themselves.

Nowadays on many Web sites server side programs are used to create HTML pages as users request them.
The content, which is stored in a database, is merged with a layout template into a HTML page, which
finally is sent to the user. The Web master creates the layout templates, a programmer adds functions like
handling user feedback and the Web site owner can add and change content in a secure manner.

Such programs are called Web content management systems. According to [Wika], “a content management
system (CMS) is a system used to organise and facilitate collaborative creation of documents and other
content”. Depending on the purpose of the CMS, specializied types of CMS are used for Web (WCMS),
enterprises (ECMS) or learning environments (LCMS) and other areas.

A Web content management system (WCMS) aids Web masters, programmers and authors in the process
of creating, publishing and updating a Web site. Through separation of logic, content and layout it helps
keeping a consistent look and feel and raises the overall quality of the user experience. WCMS can be
installed as client software on the users desktop system or as Web application on a server using the Web
browser as front end.

This thesis is about oPage, which I am developing. It is a framework for browser based content management
systems and written in PHP (section A.1 on page 127), it is platform independent and uses a relational
database to store the content. oPage has been used in a lot of projects [oPa, AKM, Dem] and is constantly
enhanced.

This paper is intended for Web designers, Web masters, software engineers and interested Web users. It is
useful if the reader has an idea of programming, Web technologies and object oriented concepts. This work
is not about integrating a WCMS into an organisation, recommended readings: [Nak01, AES02, Hac02,
ZTZ02]

1.1 Internet Services

The Internet as we know it today began in 1969 with the implementation of ARPANET by academic
researchers under the sponsorship of the United States Department of Defense Advanced Research Projects
Agency (ARPA). Their goal was to build a fault-tolerant decentralized communication infrastructure.

Simply speaking the Internet consists of computers which are connected by wires. By using standardized
protocols4 this computers can exchange data. Specialized protocols are used at every network layer, e.g. for
transmitting raw signals over a cable (at the physical layer) or sending an e-mail (at the application layer).
Hard- and software is used to connect computers to networks and these with other networks, e.g. a router
can connect a local area network (LAN), as you may have it at home or at the office, with a wide area
network (WAN) like the one your Internet service provider (ISP) has, which again is connected with other
networks.
1 Tim Berners-Lee invented the World Wide Web. Read the full story at http://en.wikipedia.org/wiki/World_Wide_Web.
2 Marc Andreessen and Eric Bina developed the first version of the Mosaic browser. http://en.wikipedia.org/wiki/Mosaic_(web_

browser).
3 Netcraft is an internet service company tracking internet technology. Numbers are taken from Netcraft December 2007 Web Server

Survey http://news.netcraft.com/archives/web_server_survey.html.
4 Read more about internet protocols at http://en.wikipedia.org/wiki/TCP/IP.

1

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Mosaic_(web_browser)
http://en.wikipedia.org/wiki/Mosaic_(web_browser)
http://news.netcraft.com/archives/web_server_survey.html
http://en.wikipedia.org/wiki/TCP/IP

1.2 Web Terminology

Internet services are network aware programs which offer some kind of function to other programs by using
the Internet as their underlying infrastructure [MW94, KaC01]. Popular services are e-mail, file transfer,
newsgroups and the World Wide Web. Newer topics are instant messaging, file sharing, internet radio and
telephony. Also worth mentioning are the Domain Name System, Telnet, Secure Shell, Archie, Gopher and
WAIS, but they are less known by the typical Internet User.

The most important Internet services (by today) are:

Electronic mail (email)

It is a way of sending and receiving messages electronically.

File Transfer (FTP)

Used to transfer files from one computer to another.

Newsgroups (News)

It is an electronic discussion system, where users can read posted messages and add new entries.

World Wide Web (WWW or just Web)

It is an information space which integrates text, images, animations, audio and video and supports cross-
references. Users often mistakenly use it as a synonym for the Internet, although the Web is a service that
operates on the Internet.

Domain Name System (DNS)

The Domain Name System is like a phone book for the Internet. A DNS server translates a Web address
into an IP-address.

Telnet

With a Telnet client one can connect to a computer running a Telnet server to interactivly execute commands.

Secure Shell (SSH)

SSH provides file transfer and telnet service through secure encrypted communication.

1.2 Web Terminology

The Web is an information space which integrates text, images, animations, audio and video and supports
cross-references. This mixture of different types of media is called hypermedia. Its predecessor is hypertext,
which has been developed in the 1960s, and integrated only text and cross-references (called hyperlinks).
Today both terms are used interchangeably. The history goes back until 1965 when Ted Nelson coined
the word “hypertext”. In the 1980s some programs have been developed, including HyperCard by Apple
Computer, but not until the broad availability of the Internet and the invention of the Web in 1990s the
concept achieved a widespread success both in academic society and commercial business.

Web sites

The Web consists of countless Web sites providing information and offering services. A Web site is a
collection of Web pages, which are provided by a Web server and displayed by a Web browser. Examples
are Web sites with personal information, information about companies, products and services or the Web
sites of newspapers, radio or TV stations. In colloquial German, Homepage is used instead of Web site5.
Usually the home page is the main page of a Web site.

5 Everywhere else, a mobile phone is called mobile phone, but we call it Handy

2

1 Introduction

Web page

A Web page is a chunk of data that can contain text, markup information and references to resources like
other pages, images or files. Each resource is addressed by an unique URL6 which is simply speaking a
combination of a hostname and a path. For example if you open the URL http://www.opage.at/index.php,
your Web browser requests the Web page generated by the script “index.php” from the server “www” of
the domain “opage.at” using the protocol “http”. This page contains HTML“Hypertext markup language”
code generated on the server upon request by a PHP7 script.

Hypertext Markup Language (HTML)

HTML (and its successor XHTML) are markup languages to structure and format text. Cascading style
sheets (CSS) provide a more flexible way of creating Web pages by writing the content in HTML and
separated formatting instructions in CSS. Different designs can be created using the same HTML file just
by applying different CSS instructions8. Additionally content can be stored on the Web server in XML9

files and combined with XSL10 or XSLT11 instructions to prepare pages for different environments like
personal computers and mobile devices.

Web application

“A Web application is a software system that is based on specifications of the World Wide Web consortium
(W3C) and provides contents and services, which are used over an user interface, the Web browser”
[KPRR04, p. 2]. It is “similar to a Web site in that it also presents related information in a uniform graphical
layout. The focus of Web applications, however, lies in the application logic (functionality) offered via
the Web” [Ker03, p. 10]. Examples are Web mail systems, online auction platforms, discussion forums or
content management systems. A standard Web browser acts as front-end and communicates with a centrally
installed service on a server by using the standard protocol HTTP. There is no need to distribute and install
special client software. This reduces both development and maintainance costs, makes the application
platform and operating system independent and allows decentralized data processing. Some limitations
exist and not every piece of software should be developed as Web application. There are inconsistent
implementations of HTML, CSS, JavaScript and other specifications and user interfaces developed in
HTML are less powerful than regular client software: Drawing on the screen, drag and drop and interprocess
communication with other client applications or the operating system are virtually not possible. Although
some client side user interactivity can be provided through client side scripting, usually for every user
interaction sending data to the Web server and reloading the Web page is required, which leads to longer
response times compared to regular client software. This can be reduced by using Ajax, a technology
using a combination of asynchronous JavaScript, CSS, DOM and XMLHttpRequest12. Frameworks like
Prototype13 and Scriptaculous14 support Web developers in creating dynamic Web applications. But with
all the limitations, Web applications are widely used [GM01].

Web application framework

Web application frameworks provide a modular infrastructure and are a reusable set of libraries, which
are frequently used when writing Web applications. For design and implementation of applications
methodologies and frameworks exist. By using a framework, productivity of the developers and the quality
of software produced can be raised [Wöh04]. Commercial and free available Web frameworks for various
programming languages and of different size and complexity are available, implementing miscellaneous
approaches of application design. Examples are Struts, Velocity, Cocoon and Java Server Faces (all based
on Java), ASP.NET (for C#, VB.NET and other .NET languages), Zope (using Python), Ruby on Rails
(Ruby) and binarycloud, Hord or PEAR (for PHP), just to name a few.

6 URL: Uniform Resource Locator
7 PHP is a programming language used on the Web. Others are Perl, Phyton, ASP or .NET languages like C# or VB.NET.
8 See http://www.csszengarden.com for a very nice example of how to restyle a Web page using CSS.
9 XML: eXtensible Markup Language
10 XSL: Extensible Stylesheet Language
11 XSLT: XSL Transformation
12 See http://www.adaptivepath.com/publications/essays/archives/000385.php for an overview.
13 http://prototype.conio.net/
14 http://script.aculo.us

3

http://www.opage.at/index.php
http://www.csszengarden.com
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://prototype.conio.net/
http://script.aculo.us

1.3 Motivation

Modern Web applications are complex software systems. Although practices of traditional software
engineering can be applied, the characteristics of Web applications require additional methods of software
development [DH01]. According to [Low99] Web engineering is “the employment of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance of Web sites and Web
applications”.

A Web content management system (WCMS) is an application for managing text, graphics, links and other
information of a Web site. Its primary focus lies on Web publishing and its main principle is the separation
of content, logic and layout [Wöh04].

1.3 Motivation

These days it is mandatory for organisations to be present on the Web. Thereby the fact is often
underestimated that content and structure have to be maintained [JM02].

I want to outline the way of developing oPage by describing my personal involvement with the Web. This
started with some “hacked together” pages and leaded me to a CMS framework.

Since my first contact with the Web in 1994, the way I am creating Web sites changed a lot. I prepared
the first Web pages using a text editor. It worked, but was not very convenient, and adding another page
involved changing the navigational links in every other pages by hand. The next time I used an offline
WYSIWYG word processor which also managed the navigational links. The initial Web site was easy done,
but after the site started growing, managing became time consuming since nearly each change required to
recreate and upload all pages of the Web site. Also it was hard to keep a consistent page layout because this
program offered to much design freedom in the content areas.

I like to automate things and I did not want to get to deep into HTML coding. Write it once and run it
forever. I created a database, some forms to enter data and a program written in BASIC to read the data and
create static HTML pages, which could be uploaded to the server. This was my first content management
system (I had no idea that it was a CMS, but I knew that this was something to hang on with). I extended this
program to create a Web site, which is still in use today. This was the first step in content-layout separation.
Although it was possible to change fonts, colors and some icons through the user interface, HTML code
was deeply embedded into the program and the pages were still created offline and uploaded to the server.

With the introduction of Microsoft Active Server Pages (ASP), the language Basic entered the Web. I started
writing classes which could be useful for creating a Web site. These classes were used to hide the HTML
code from the programmer. A base page class created a frame with navigational links and a derived class15

created the individual page content using module classes, which read the data through a database class.

In the next project at another company I developed an onlineshop. Once again a database and some forms
were used to enter data. But the Web pages were created dynamically upon request. The next step was to
add forms to the Web site, where authors could submit and change content.

Object orientation is limitated in ASP, so I searched for something else and became interested in PHP. For a
project I rewrote my ASP classes in PHP, but still with the idea to hide the HTML code behind some source
code.

One more project had to be done to show, that more flexibility in layout and design was needed. Another
problem was, that a programmer was needed to write the code for the Web pages, because it was to
complicated for a Web designer, who usually do not have programming skills.

I needed something with the following characteristics:

- used with standard Web browser
- structured in reusable modular parts
- easy to use for content managers
- easy to understand by Web designers
- easy to extend by programmers
15 There is no inheritance in ASP, it was done by nesting the instance of the parent class into the derived class.

4

1 Introduction

Figure 1: Web site www.opage.at

- easy to install by system administrators
- not limiting design ideas

In this paper I am introducing the oPage framework for Web based content management systems. Software
developers can use oPage in their projects to create customer specific Web sites and content management
systems. Web designers can take advantage of preprogrammed modules and apply their own design by
editing just a few templates and CSS files without the need of programming experience.

oPage provides a useful infrastructure for developing Web applications:

- Model-View-Controller (MVC) object oriented software architecture
- fast template engine
- base class for data retrieval and output
- formular engine for single and multiline forms
- serverside image manipulation
- import and export interface
- database abstraction layer
- support for multiple languages
- extendible environment for content editing

Users of oPage experience a steep learning-curve and get instant results. It is easy to migrate an existing

5

1.4 Problem Definition

Figure 2: Administration interface of www.opage.at

Web site to oPage or integrate oPage just at a few places of a given Web site.

Since the first draft of oPage, it has been extended alot to fulfill the various requirements of Web sites
created with it. This covers simple guestbooks, private homepages, company Web sites, online stores of
different sizes, discussion forums and newsletter systems. References can be found at [oPa].

1.4 Problem Definition

The main subject was to create a reusable framework for Web based applications, which can be chosen
to develop platform independent content management systems for various purposes. It has to work with
minimal system prerequirements, and a typical Web space of an average internet service provider has to be
sufficient for hosting Web sites using oPage. Typical used programs used on Web servers are Linux, Apache,
MySQL and PHP16, but it should run as well with Windows, IIS, PHP and various database management
system.

Getting started with oPage should be very easy and providing instant results to users. Web sites created
with oPage have to follow Web standards and have to be compatible with all major Web browsers.

The administration user interface (the backend) has to offer a WYSIWYG word processor and has to be
robust against faulty input. Authors should not need special training.

16 This combination is often referred as LAMP

6

1 Introduction

The development of the framework must follow a clear path, so that other developers can extend the system
in the fields of ecommerce, sending newsletters, discussion forums or picture galleries.

1.5 Organisation of this thesis

Chapter 1 gives background information on Internet, Hypermedia and WWW. Terminology is explained as
well as the purpose of this work.

Chapter 2 discusses the state of the art of WCMS and what kind of functions are provided. System
classification criteria are defined and related approaches are shown.

Chapter 3 covers oPage. By means of a small and easy understandable sample Web page, it is described
how oPage is designed. A diagram and a class tree gives an overview of all areas of oPage. Main classes
are outlined and samples are enclosed to demonstrate how to customize and extend the framework.

Chapter 4 evaluates what has been accomplished, and tells the lessons we learned.

Chapter 5 gives an outlook on potential future extensions.

Chapter 6 concludes the thesis and summarizes the major contributions of this work.

7

8

2 Web Content Management Systems

This chapter provides an overview about what Web Content Management Systems are. Beginning with a
general definition of content management, the principles of Web content management are explained. The
important topics like authoring, storing, workflow and publishing are described as well as the different
user roles involved in a Web project. Four different Open Source Content Management Systems (TYPO3,
Drupal, Joomla! and eZ publish) are described and my opinion on their strengths and weaknesses are listed.

“A Web Content Management System is a type of Content management system software used for managing
Web sites.” [Wikb]

Web Content Management

Internet
Intranet
Extranet

Text
Images
Sounds
Videos

...

Creating
Processing
Managing
Publishing
Archiving

System

Figure 3: Web Content Management System [ZTZ02, p. 70]

The CMS stores content (text, graphics, links, etc.) for distribution on a Web server and provides tools
where users can create and manage content with little or no knowledge of HTML. “Most systems use a
database to hold content, and a presentation layer displays the content to regular Web site visitors based
on a set of templates” [Wikb]. The systems usually provide a user interface which can be accessed using a
Web browser.

2.1 Content Management

“Content management is the systematic and structured way of procuring, creating, treating, managing,
presenting, processing, publicating and reusing content” [RR01]. This definition is independent of the
use of electronic devices [JM02].

In “traditional publishing” [RR01, p. 5-37], independent industries are involved in creating and processing
different types of media like texts, sounds, images or movies. In this traditional publishing process the
author creates the texts, the graphic artist prepares the images and the layouter combines everything into
a page of a magazine or book or brochure. In each step, separate programs are used by experienced
professionals: The author uses a word processor, the graphic artist an image editing program and the
layouter a precise layouting program. Nowadays corporations and private persons have joined publishing
companies and advertising agencies in distributing information. This drives the need for special tools which
satisfy the expectations of professionals as well as the requirement of occasionally (or inexperienced) users.

Managing content to meet the diverse demands of a large user community requires four primary components
[Hac02, p. 52], [BL01]:

- an environment for creating and acquiring content (authoring)
- a repository for storing and retrieving content (storing)
- a method for assembling and linking content (workflow)
- a delivery mechanism for delivering content to your customers (publishing)

Core features of a content management system (CMS of first order [RR01, p. 64]) are

- structured store for typed content and meta information
- access control
- protocol functions
- check-in and check-out mechanism

9

2.2 What is a WCMS

Create Review Store Publish Archive Dispose

Authoring Publishing

Storage

Workflow

Figure 4: Content Life Cycle [BL01]

- query operations
- multiuser system
- mass operations
- management instruments

Additional operations (CMS of second order [RR01, p. 65]) include workflow, data aggregation and
relationship management, a design tool, version control, a protocol log for atomic changes, backup and
rollback methods and the support of foreign formats and multiple languages.

By using a CMS, content is [Hac02, p. 77]:

- more easily accessible to everyone within the organisation
- available at one virtual location without having users search on multiple servers or individual hard drives
- a single point of source, so that users can be confident, that they have found the latest version of the

information
- labeled according to when and by whom it was written
- tracked through a workflow process that records when and by whom it was modified
- managed under a security process, which ensures, that it can be checked out and modified by certain

authors, read by selected users, and not accessed at all by other individuals in the organisation

“Fundamentally, a CMS devolves control over content to the owners of that content (rather than the
technician), and then scales without increasing management overheads” [BL01].

There are several types of content management systems:

- Document management
- Knowledge management
- Media asset management
- (Intranet) groupware
- Enterprise content management
- Web Content Management Systems
- Specialized WCMS for portals, Wikis17, Blogs18, calendars, forums, galleries, e–Learning or online

shops.

In this work only Web Content Management Systems are covered.

2.2 What is a WCMS

A Web content management system is an application for managing text, graphics, links and other informa-
tion of a Web site. Its primary focus lies on Web publishing and its main principle is the separation of logic,
content and layout [Wöh04]. Also enclosed are functions for Web site management [WS00, p. 1334] like
file management or link checking (see figure 5 on the next page).

17 WikiWikiWeb. A form of hypertext document where every user can be an author. [Lei01]
18 Blog is an artificial word combined from Web and log.

10

2 Web Content Management Systems

Content-
Management

Web-Content-
Management

Web-Site-
Management

Figure 5: Relationsship between Web site management and content management [WS00, p. 1334]

2.2.1 Web in WCMS

The term “Web” both stands for Web site and Web application: Web site because we talk about content
management of Web sites, Web application because we talk about Web based content management systems.

The main focus of a Web site is to provide information, while a Web application offers some kind of service
[Ker03, p. 1]. Is an online shop a Web site or a Web application? The part, providing information about
the articles is a Web site while the part with shopping cart, customer registration and order form is a Web
application. Since a WCMS is always a Web application, a Web site built with a CMS will also be a Web
application. In this work, the term Web site is used synonymously with Web application.

Another usage of this term is in Web standards and technology, like they are used on Internet, Intranet and
Extranet19, which are disdinquished by their user groups. Internet Web sites can be accessed by everybody,
Intranet Web sites just by employees via the company network, the Extranet, a special part of the internal
network, can be accessed by external users with username and password.

2.2.2 Content in WCMS

Information handled in the authoring environment might include [Hac02, p. 60]:

- information authored by members of an organisation
- information brought in from outside an organisation (third-party)
- information licensed by an organisation from external information providers (syndication)

I extend this list with

- information coming from internal applications
- information acquired from Web applications

Data of internal applications could be shop-items which are exported from a stock keeping application to
the database of the company’s online store as well as reports from the accountings database. Data of Web
applications are orders, newsletter subscriptions or entries in the guestbook, online forum or FAQ database.

Important content elements are [RR01]

- Unstructured text
- Structured documents
- Formated documents
- Information in databases
- Binary objects or files: 2D and 3D images, audio clips, videos, flash movies or document files like PDF,

word processor, spread sheets and others.

19 Internet, Intranet and Extranet are sometimes referred as I*net

11

2.2 What is a WCMS

But what about elements for user interaction, navigational items like buttons and links, or forms to subscribe
a newsletter or the shopping cart of an online store? These parts of a Web site are not typically seen as
content, but need also to be managed.

2.2.3 Management in WCMS

“Management”20 in WCMS covers “things we have to take care of”. This includes of course processes
dealing with content, but also the administrative tasks of the WCMS itself.

- Create
- Process
- Review
- Publish
- Archive
- Dispose
- Import
- Export

Figure 6: Content
Manage-
ment

Authors create, process and publish content using the content management system.
They start their Web browser and access the administration part of their Web site.
There they select the area, e.g. the news section, where they want to add an entry or
change one. Then they type their news into a form and submit it to the server. The
CMS validates the entered data and stores the content in its database. Depending
on the system authors can apply formatting like bold or underline. Also options for
structuring the text into headlines and paragraphs may be available. Multimedia
objects can be added either by uploading files from the local computer to the server
or by selecting items from the media library within the CMS. This images, sounds
and videos can be processed in various manners, e.g. an image has to have a given
size to fit into a predefined frame or a version with reduced quality (and filesize)
has to be prepared for users with slow internet connections. Exporting existing
content for further use can be done in different formats like CSV, XML, PDF or
RTF files. Even text could be converted by a speech engine into a sound file.

If everything is ready to be published, the author forwards the entry to the editor for review. This is either
done automatically by a workflow system or can be done manually by changing the associated user. The
editor reviews the news article and aprooves it or sends it back to the author for a rewrite.

In most systems, entries can be equipped with an expiration date, after which they are not be displayed any
longer. Also a starting date may be set. Instead of taking the entries from the Web site, the state can be
set to archive, where the content may be not displayed on the main page any longer, but is still available
through fulltext search.

2.2.4 System in WCMS

A broad range of systems is needed to run a WCMS. There are hard- and software systems. Hardware
can be as little as a shared Web space at an Internet Service Provider or as big as a cluster of world wide
distributed computer systems.

Software like operating system, Web server, mail server and database management system have to be taken
into consideration. Depending on the size of your organisation and the specification of your Web site,
different kinds of configurations can be selected.

For smaller Web sites, a shared Web space at an Internet service provider may be sufficient. This Web space
usually includes an Internet domain address, email services, space to store the files of your Web site and
services for running server side programs written in Perl, PHP or .NET.

Ambitious Web sites may require dedicated servers. This are computers where only your application is
running, in contrast to the shared Web space, where many Web sites share the same resources.

The server can be placed in a data center at an Internet Service Provider (ISP), it can be rented from
and/or managed by the ISP. If you have a fast and reliable Internet connection, you can place your server
at your own place. This opens up more possibilities but requires additional infrastructure (backup Internet
connection, uninteruptable power supply, standby servers) for running a 24/7 system (which Web sites
usually are).

20 from Old French ménagement “the art of conducting, directing”, http://en.wikipedia.org/wiki/Management

12

http://en.wikipedia.org/wiki/Management

2 Web Content Management Systems

2.3 WCMS roles

In this section, roles are described, which has to be filled in a typical Web site project. Depending on the
size of the project, members can play multiple roles.

System administrator

A system administrator is responsible for the operating system, Web server, database management software
and all other system programs.

CMS administrator

The CMS administrator has the highest privilege level of all users and handles tasks like creating user
accounts, setting access privileges and other management tasks.

Designer

This person is responsible for the look and feel of the Web site and creates graphical previews of the Web
site, which are used as page templates for the CMS.

Webmaster

A Webmaster integrates the templates of the designer into the CMS. Depending on the CMS, the Webmaster
may also be able to create and configure the Web site and customize the CMS.

Developer

The developer knows the API of the CMS and is able to extend the CMS to meet customer requirements.
Examples are customer specific extensions or the integration of external data sources.

Editor

The editor is responsible for the content displayed on the Web site. He may be responsible for the whole
Web site or just for a part of it. As part of the workflow he reads articles written by authors. If an article
fulfills all requirements, he changes the state of the article that it will be displayed on the Web site. If an
article needs to be changed, he sends it back to the authors.

Author

The author submits articles into the CMS. This can be writing text, and also preparing pictures. It may
be formatting and linking the content with other articles. Usually, authors are not allowed to publish their
articles without authorization of an editor.

User

In this paper, a user is a person, who visits the Web site. In contrast to the other roles, he or she has no
access to the CMS. Still, users may add content to the Web site through message boards, forums or Wikis.

2.4 WCMS functions

In this section, the main functions and features of modern WCMS are described. figure 7 on the following
page shows the CMS feature onion. Although this figure is from a paper dated 2001 (which is nearly
medieval in Internet times), in my opinion it is still relevant.

2.4.1 Versioning

In a multi user environment versioning provides a save way to edit content without overwriting each others
changes. Also older versions can be recalled. Two kinds of versioning approaches exists.

13

2.4 WCMS functions

Versioning

Workflow

Integration

Applications

User-
Interface

User-
Management

Data-
Sources

Deployment

Programmibility

Syndication

Searching,
Indexing

Self-service
authoring

Link
management

Site
management

Devolution
management

Integration -
authentication

services
Role-based

security

XML-base
data repository

File system

Databases

Flexible
output

Caching

Replication

Figure 7: The CMS feature onion [BL01, p. 6]

The first is called checkin/checkout. Users either have explicitly checkout a record before they can modify
it or this is implicitly done by the system. Only one user can have checked out an individual record. After
the user has finished working, the record has to be checked in again. If the data has been modified, a new
version is created.

In the second approach, a record gets not locked, instead the system saves the state of the record at the start
of the modification and compares this state with the state at the time of updating. If it has changed, a new
version is created and the new data is stored. If another user applied updates in the meantime, the first user
is notified and the new data is rejected.

The advantage of the checkin/checkout approach is, that it is rather easy to work with, but hinders
parallel work. The second aproach is more complex and version conflicts can occur. In CMS implicit
checkin/checkout is usually used.

In my personal opinion, record locking is optional in smaller project, but is crucial when a larger group of
content managers is working with the system. Although I never had a request for versioning in the Web
projects I was involved, versioning is still a nice feature to track changes or restore a previous state of a
record if something happend.

2.4.2 Workflow

A workflow is a process, where a document is tracked “through a number of individuals who are required
to take some action such as edit, review or approval” [Hac02, p. 61]. This can be as simple as each record
having a field for the current owner (e.g. an editor or an author). The other end is a flexible, event driven
workflow system, with which custom routes for different types of content can be built as needed. People
involved in the workflow are notified about changes either by receiving an email or by having new entries
in their workbox.

14

2 Web Content Management Systems

A workflow system is a technical implementation of a formal organisational process. In my experience, it
often hinders more then it helps. I prefer the simple version, where a user is attached to each record as
owner and a mechanism to display only records for a selected user.

2.4.3 Integration

Templating

Templates separate the layout from the content and the application logic, and are merged with the content
to produce the final output. Design templates give the Web site a uniform look and are applied on the whole
site, while content templates are related to specific types of content. Different types are used for shop items
and news entries, while both the shop as well as the news section make use of the same design templates.
In general to change the design of the Web site, only the design templates need to be modified.

Asset management

As described in section 2.2.2 on page 11 different types of content has to be managed.

Textual content can be typed directly into the content management system using the user interface provided.
External files can be uploaded from the authors desktop computer to the Web server using internet protocols
like HTTP form upload, FTP or WebDAV and are stored in the filesystem (see also section 2.4.4 on the
following page). In a multiuser environment record locking provides a safe way to make changes without
getting in the way of someone else (see section 2.4.1 on page 13). It should be easy to create extensions for
managing custom structured content.

How can be unstructured content like plain text, word processor or PDF files be integrated into the content
repository? Can they be automatically converted to HTML, are they included in the fulltext search? Which
output formats are available? Beside of HTML, content could be needed in formats like plain text, XML,
rich text or spread sheet (see section 2.4.9 on page 19).

Some assets may have to prepared before putting them on the Web site. For large images, a thumbnail needs
to be created, the size of the image may be reduced, or the image may be cropped, rotated or converted to
gray scale. This is referred as server side image manipulation. Some systems even offer ways to create
graphical headlines, banners, menu items and buttons dynamically from text.

Metadata

Metadata are data about data, each Web page should contain metadata like keywords, an abstract or a
description as well as information for search engine spiders, if the page should be included21 into the
search index. Content fragments can be equipped with metadata for personalisation. Images should be
stored along with size, resolution, place of origin and name of the photographer or copyright holder. The
“Semantic Web” [BLHL01] was created to make content understandable by computers. An example is
the XML based Resource Description Framework (RDF) format [RDF], which can be used for content
syndication.

Staging

Changes of a Web site should not be done live. Broken links to pages could occur or applications developed
may contain bugs. Usually only two stages are used, staging and production. The staging site is only
available for a restricted user group, while the production site can be accessed by the regular (Internet)
users. Depending on the CMS, content management is either done at the staging site or at the production
site.

Personal note: I extend this list with two more stages. The development stage is at the very beginning,
where software developers make modifications on the Web site. A programmer has a copy of the Web
site on his computer and submits changes to a repository of a version management software. At the next
stage, which I call testing, unit- and integration-tests are performed, before the site is copied to the staging
environment. In smaller projects, only development and production stages exist. If multiple developers are
21 excluded from search engine results should be pages only containing navigational links or the print version of a page

15

2.4 WCMS functions

working on a site, a testing environment is vital. In my projects content management is only done at the
production site. Staging of the Web site is done in case of major changes, to have an environment, where
the customer can review the site.

2.4.4 Data repository

Data repositories are databases, XML-based storages or files. Most of the CMS require a RDBMS, for
simpler systems the filesystem is sufficient. XML formatted content can be stored in special XML databases,
or in relational databases as well as in files. For performance reasons, binary objects like images or pdf files
are usually stored in the filesystem, while their filenames reside in database fields.

An interesting part is the integration of external data sources. For example a warehouse management
software keeps track on article information like article code, title and the quantity in stock. This information
should be reused for the online shop, but it needs to be extended by article images, description, size or color.
Since the original tables can not be changed, some extra tables have to be created and a user interface has to
be provided. The online shop may be on a different server at a different location and a direct connection may
not be up for 24/7. A replication software can be used to synchronise the article entries of the online shop
with the warehouse system. In the other way round, online shop orders have to be imported as purchase
orders into warehouse software. Order state changes and shipping tracking numbers may also be presented
on the Web site.

2.4.5 User management

This topic covers author management (as defined in section 2.3 on page 13). Accounts and groups can be
managed, accounts and rights can be assigned to groups, to prevent authors from accessing areas, where
they have not the permisson for changes. An existing user database may be used for authentication. Authors
can be limited to update the Web site content only, can be restricted to certain areas of the Web site or limited
to only perform certain operations.

Personal opinion: In my projects only a small group of people works with the CMS and updates the Web
site. I never had the need to integrate an existing user base with LDAP or Active Directory, since this
services are usually not accessible from the outside, but the Web site is usually hosted outside. This may be
different for organisations like universities or big enterprises.

2.4.6 User interface

Editing interface

Browser-based client and administration tools allow authors to work from any location and minimise
deployment and support costs. Non-technical authors should be able to submit content directly either to
a staging environment or the live Web site, people with average knowledge of word processing applications
can create content easily, without HTML or programming skills. But the user interface must as well
fulfill the needs of experienced designers and developers. Both desktop Web creation software22 should
be integrated as well as development tools (IDE23) or text authors24. Authors should be able to preview
their changes before they submit them to the repository.

Managing the site structure

The Webmaster, site designers or authors with the appropriate permissions can define the site structure, lay
out section hierarchies and create necessary page entries. Based on this data the navigation controls are
automatically filled and a corresponding site map is created.

22 e.g. Microsoft Frontpage, Adobe GoLive!, Makromedia Dreamweaver
23 integrated development environment
24 my favorite is UltraEdit

16

2 Web Content Management Systems

Session analysis and reporting

Most interesting are logfile analyses for access statistics, as well as error reporting. But the nature of the
CMS works against it, because in many systems, each page is created by calling the same script with a non-
selfexplaining parameter. Usually included in the CMS are access counters for pages and content items.
Extensive systems contain tools to measure page sizes and the performance of the Web site, and report
possible slow pages and broken links. High end systems use tracking cookies or counting pixels to identify
user visits and entry- and exit-pages. Counters can be activated for each fragment and are increased every
time, the fragment is displayed. Questions like how often was an external link clicked, or how often was a
file downloaded in the last two weeks can be answered.

Session analysis tracks how users use the Web site, which areas are popular, what are the entry- and exit-
pages, which way took the user through the Web site and how long was he on the Web site. A nice feature
is to display the current active user number on the Web site (if it is not too embarrassing because of low
numbers). To take part in the official Austrian Web site statistics25 tracking- and statistic-software has to be
integrated. A special code has to be placed on each Web page to track user activity as well as to calculate
overall access statistics.

2.4.7 Applications

Software architecture

Software engineering has developed a lot of different ways to structure complex programs. Well known
examples are the monolithic system, client-server, the three- or multi-tier model, software componentry,
peer-to-peer or the service-oriented architecture.

Above this structures, design patterns have been described to provide reusable solutions for common
problems. Architectural patterns are Model-View-Controller (MVC), Presentation-Abstraction-Control
(PAC) or the microkernel [Avg05].

“A robust software architecture is said to be one that exhibits an optimal degree of fault-tolerance, backward
compatibility, forward compatibility, extensibility, reliability, maintainability, availability, serviceability,
usability, and such other ilities as necessary and/or desirable.”26 That is what we want.

Security

Can software be secure? Unfortunately, software systems leave plenty of room to undermine security since
programs can be modified. Microsoft has been (and still is) confronted with a high number of security
issues in its products. Since more people and businesses rely on computing every day, Microsoft formed
the “Trustworthy Computing” in January 2002, to focus on solid engineering and best practices to ensure
the delivered product or service is more reliable and secure27.

Secure by Design28 means that design of the software is made to be secure, that it can not be abused, and to
minimise the impact if someone breaks in. E.g. a Web server should run with the least amount of privileges
possible.

Secure by Default29 means that security is prefered over user friendliness. E.g. a fresh installed mail server
is locked down and can not be accessed by other computers at all.

Common API

For customization and extending the CMS provides an application programming interface (API), which
enables software developers and third party vendors to build a tailor made solution. For open source
products, various repositories30 exist. Extensions (some times called modules) like News, Gallery, Shop,

25 http://www.oewa.at/
26 http://en.wikipedia.org/wiki/Software_architecture
27 http://www.microsoft.com/security
28 http://en.wikipedia.org/wiki/Secure_by_design
29 http://en.wikipedia.org/wiki/Secure_by_default
30 e.g. http://typo3.org/extensions/

17

http://www.oewa.at/
http://en.wikipedia.org/wiki/Software_architecture
http://www.microsoft.com/security
http://en.wikipedia.org/wiki/Secure_by_design
http://en.wikipedia.org/wiki/Secure_by_default
http://typo3.org/extensions/

2.4 WCMS functions

Blog or Wiki can be downloaded for free from there. They can be installed by the Webmaster with just a
few clicks and are integrated seamlessly into the CMS.

Integration of external tools

Although management of advertisement can be done with the CMS itself, it is more common to use the
service of an advertisement agency or to take part in the promotion programs of Amazon, Ebay or Google.
The CMS must be able to embed this content comming from external servers into the Web pages.

Weather information or stock quotes can be grabbed from other Web sites. The CMS provides a way to
configure the access to the Web service and to retrieve the information.

Localisation

If needed content should be provided in various languages. Texts, templates and images may be language
dependent. At any time additional languages can be added.

Programmability

Is it possible to automate tasks by creating scripts within the CMS. Systems written in a serverside scripting
language (like PHP or ASP) can easily be scripted by extending the source code. But systems which
are on the server as compiled binaries (e.g. .NET) have to provide a special interface. Depending on
the complexity of the API, an author or the Webmaster can prepare scripts otherwise an experienced
programmer is required.

Scheduling

For each fragment, a starting and ending timestamp can be set. The item will be displayed on the Web site
only between the defined time frame.

Searching and indexing

Search- and index-tools are often part of the CMS. Users can select if they want to scan the whole site or
just a part of it, e.g. only the news section. If multiple sections are searched, the resulting items can be
group by their associated section. Each module has to offer a interface which is called by the search engine
of the CMS. A fulltext index of database entries is provided by the DBMS. For content in flat files, a fulltext
index has to be built to avoid going through all files on each request.

Syndication

If you have valuable content, which is interesting to other Web sites, you can increase the popularity of
your own site by making it available to other Web masters. They can integrate the data you provide and
enrich their own site. They usually get only abstracts a link back to your Web site for the full-length article.
Although content could be made available in HTML or text, it is usually done in XML. Popular XML
syndication formats are Really Simple Syndication (RSS)31 and Atom32.

Personalisation

User accounts are stored in a membership database. Either users can register them self or are registered
upon request. Users can be assigned to groups, for which content is made available through the CMS. The
same membership database can be used for sending newsletters, the online shop or a discussion forum.

Examples for personalisation: On the main entry page, the user can be welcomed with a personal address.
For a family gallery, pictures can be categoriesed into private, relatives, friends and public. Public pictures
are accessible by everyone, all other pictures require a previous login of the user. Images are display
according to the status level of the user. Depending on the items a visitor has in his shopping cart, the
online shop can suggest other items, which the user may have interest in. E.g. if the user buys tea, he may
need sugar or a tea strainer as well.

31 http://en.wikipedia.org/wiki/RSS_(file_format)
32 http://en.wikipedia.org/wiki/Atom_(standard)

18

http://en.wikipedia.org/wiki/RSS_(file_format)
http://en.wikipedia.org/wiki/Atom_(standard)

2 Web Content Management Systems

2.4.8 Import/Export

All or just a group of items can be exported. Import has to support complete replacement or the
synchronisation of the stored data with the new data. Content can be processed as CSV, XML or an
application specific format.

For example: On a Web site CSV formated shop items are imported. These records are created on the
warehouse server and uploaded automatically with a script on a regular base. To reduce the size of the
list, only changed items are processed. Later a partner uses the export function to get the articles into his
online-shop.

2.4.9 Deployment

Web sites are accessed using different devices with different capabilities. Screens of desktop computers
have a higher resolution than those of pocket computers or mobile phones. HTML is not always the format
requested. Content can be produced in formats like PDF, RTF, XML or MP3.

Web compatibility

According to the Web Accessibility Initiative (WAI33) Web sites have to be made accessible for people
with disabilities. This requires e.g. filling out the alternative text attribute of images and making use auf
cascading stylesheets (CSS) and XHTML instead of old HTML and tables. Programs34 exist to check Web
sites for compatibility with Web Content Accessibility Guidelines35.

Caching

To reduce the workload on the server caused by dynamic Web sites, complete pages or fragments are
cached[CDIW05]. The tricky part is to determine, which parts are outdated and need to be recreated. High
volume Web sites use a load balancer and multiple production servers. These servers can be located at the
same place or distributed worldwide. The content is replicated to each production server from the staging
server. While this is easy for read-only content, updates made by users have to be planned carefully to avoid
synchronization conflicts.

Search engine optimization

Search engines treat dynamic Web sites different then static pages. In the worst case, the index gets caught
in an endless loop. To avoid that, some spiders crawl pages without any parameters.

The CMS should provide self speaking URLs and use methods to hide parameters to get a better position in
the search result. Instead of “index.php?id=125” the URL may look like “index.php/id=125/Some_new_-
stuff_on_my_website”. Some systems even can hide themselves completely, although this requires usually
specific settings on the Web server. Another trick is to present a search engine optimized version of the Web
site if the client is a crawler.

ISP mass hosting support

Parts of the content management system are needed only once on the server and are common for all Web
sites. Providing Web space with an included CMS can increase revenue for ISPs, especially when they offer
additional services like customizing and support.

33 http://www.w3.org/WAI/
34 http://wave.webaim.org/index.jsp
35 http://www.w3.org/TR/WCAG20/

19

http://www.w3.org/WAI/
http://wave.webaim.org/index.jsp
http://www.w3.org/TR/WCAG20/

2.5 Web Content management systems

2.5 Web Content management systems

In this chapter I take a look at various systems to get an idea of how it looks in the real world of web content
management. Various Web sites36 37 38 39 list more then 300 different systems, so the choice was not an
easy task, which systems to examine here.

On behalf of the Austrian ministry for education, 285 Content Management Systems where evaluated
[BHMH03, p. 17] for their possible use in schools and universities. The authors made a recommendation
for 3 open source products: PHP-Nuke (and derivatives), TYPO3 and Eduplone.
Others ([Ped04, p. 8], [Mic04, p. 29]) applied different criterias and took the following systems for a closer
look: Drupal, eZ Publish, Mambo, PHP-Nuke (and derivatives), Xaraya and Xoops.

At the CMS Matrix Web site40, a place dedicated to provide information on both commercial as well as open
source content management systems, users can rate products in various categories like system requirements,
ease of use, flexibility or performance. The well known names usually show up in the rankings at the top
places.

My personal experience comes from Small and Medium Enterprises (SME)41. In section 2.6 on page 32 the
criteria for my own system are described.

I applied these criteria and the information collected from the above mentioned sources as a guideline to
select the CMS for this paper. I have chosen the following systems:

- TYPO3
- Drupal
- Joomla!
- eZ publish

These system have been selected, because they are widely used and well documented, and because they
have a strong developer community. These systems are open source, which makes it easier to try them and
examine, how they work.

If you are interested in proprietary products, a brief description of three major content management systems
can be found in [Wer05, p. 9]. This article covers ECM Suite RedDot XCMS 6.542, Vignette V743 and
Interwovens TeamSite 6 Content Management Server44.

All my tests where done on a PC running the German version of Microsoft Windows XP SP2 with all
available updates installed. I used Apache 2.2.2 as Web server with mod_rewrite and mod_ssl, .htaccess
support enabled and PHP loaded with php4apache2 server API module. Typo3, Drupal and Joomla where
tested with PHP version 4.3.7, for eZ publish I had to switch to version 4.4.1. The following PHP
extensions were active: php_gd2, php_xslt and php_mbstring. As DBMS I used MySQL version 4.1.14,
as management frontend phpMyAdmin 2.7.0-pl2 has been installed. Both the Microsoft Internet Explorer
6 and Mozilla Firefox 1.5.0.4 have been utilised. To check the HTML source for compatibility, the Web
developer plugin45 for Mozilla Firefox has been used.

2.5.1 Feature comparison

Table 1 on the next page has been created using results of my own experiments as well as data of CMS
Matrix46. An extensive feature comparison of the systems mentioned here and some other interesting
36 http://www.cmswatch.com/Reports/Vendors/
37 http://www.cmsmatrix.org/matrix/cms-matrix
38 http://www.contentmanager.de/itguide/marktuebersicht.html
39 http://www.opensourcecms.com/
40 http://www.cmsmatrix.org/matrix/cms-matrix?func=viewRatingDetails
41 The European Union defines enterprises with less then 50 employees as small and companies up to 250 employees as medium

sized. http://ec.europa.eu/enterprise/enterprise_policy/sme_definition/index_en.htm
42 http://www.reddotsolutions.com
43 http://www.vignette.com
44 http://www.interwoven.com
45 http://chrispederick.com/work/webdeveloper
46 http://www.cmsmatrix.org

20

http://www.cmswatch.com/Reports/Vendors/
http://www.cmsmatrix.org/matrix/cms-matrix
http://www.contentmanager.de/itguide/marktuebersicht.html
http://www.opensourcecms.com/
http://www.cmsmatrix.org/matrix/cms-matrix?func=viewRatingDetails
http://ec.europa.eu/enterprise/enterprise_policy/sme_definition/index_en.htm
http://www.reddotsolutions.com
http://www.vignette.com
http://www.interwoven.com
http://chrispederick.com/work/webdeveloper
http://www.cmsmatrix.org

2 Web Content Management Systems

products can be found in the appendix (section A.5 on page 137).

Table 1: CMS comparison

TYPO3! Drupal Joomla! eZ publish
Version 4.0 4.7.2 1.0.10 3.8.1
Operating system Any Any Any Any
Data repository MySQL,

PostgreSQL,
Oracle, MSSQL

MySQL,
PostgreSQL

MySQL MySQL,
PostgreSQL,
Oracle, MSSQL

Installation simple medium simple simple
Versioning Yes Limited Yes Yes
Workflow Limited Limited Yes No
Integration
Templating yes yes yes yes
Asset management yes yes yes yes
Metadata yes yes yes yes
Staging free add-on no no yes
User management advanced medium limited medium
User interface
Editing interface advanced medium medium advanced
Managing the site structure yes yes yes yes
Session analysis and reporting free add-on yes yes free add-on
Applications
Software architecture mainly object

oriented, but no
obvious
architectural
pattern

procedural, hook
system

object oriented
and procedural,
controller / view

object oriented
and procedural

Common API yes yes yes yes
Integration of external tools free add-on yes free add-on yes
Localisation yes yes free add-on yes
Programmability easy medium easy easy
Scheduling yes free add-on yes yes
Searching and indexing free add-on yes yes yes
Syndication yes yes yes yes
Personalisation free add-on free add-on yes yes
Import/Export) xml, xml, csv,

swx
csv, xml csv, xml csv, xml

Deployment free add-on for
pdf, rtf, csv, xml

free add-on for
csv, xml

pdf, free add-on
for csv, xml

pdf, csv, xml,
open document

Web / WAI compatibility yes / free add-on yes / limited no / no yes / yes
Caching yes yes yes yes
Search engine optimization yes yes yes yes
ISP mass hosting support yes yes free add-on yes

2.5.2 TYPO3

“TYPO3 is an enterprise-level open source content management system released under the GPL. It runs
on more than 122,000 servers worldwide. The application has been translated into 43 languages and is
actively being developed in a community of over 27,000 users in 60 countries. Some of its users include
BASF, DaimlerChrysler, EDS, Konika-Minolta, Volkswagen, UNESCO, as well as numerous universities,
government agencies and non-profit organisations”47. At the TYPO3 Web site more of references are

47 http://www.typo3.com/TYPO3_Version_4_0.1852.0.html

21

http://www.typo3.com/TYPO3_Version_4_0.1852.0.html

2.5 Web Content management systems

listed48.

The concept behind of TYPO3 requires a considerably amount of time to become familiar with it and has a
flat learning curve. Also a big chunk of knowhow about Internet technology is needed to build a Web site
with TYPO3.

Figure 8: TYPO3 backend

Web site: http://www.typo3.com/

Version evaluated: 4.0
License: GPL

System requirements

TYPO3 can be installed at nearly every Internet service provider and requires a Web server like Apache
1.3.x, PHP 4.1.2 or above, MySQL 4.x and ImageMagick. Shell access to the Web server is not required.
A PHP accelerator like eAccelerator or Zend engine is highly recommended.

Strengths and weaknesses

This is not a complete analysis. I just mention topics which I found interesting when exploring TYPO3. It
may seam, that I am bringing more weaknesses and less strengths. To be clear, I think that TYPO3 is a
great system and therefore used by software developers for good reasons.

Installation

+ Although TYPO3 is a rather complex program, installation is quite easy with the 1-2-3 setup program.
Configuration settings for the database access are asked and a database can be selected or created. All tables
are created by the setup script. In the standard setup paramters for sending mail or image manipulation
can be set. It checks PHP parameters, the Web server environment and the filesystem, that all necessary
directories exist and if they are writeable. Tests for image processing exists as well as for the database
tables.

+ The database schema can be created, checked and updated within the installation program. There is no
need to execute SQL statements with a database management program like PhpMyAdmin.

- As noted above, installation is easy, but in the standard setup a lot of parameters can be changed. If a
directory does not exist, no suggestions are made, what needs to be done. Do I have to create the directories
48 http://typo3.org/about/sites-made-with-typo3

22

http://www.typo3.com/
http://typo3.org/about/sites-made-with-typo3

2 Web Content Management Systems

by myself or are they created automatically, when they are needed later? A lot of information is presented,
but most of it can confuse unexperienced users.

Documentation

+ Video tutorials are available by Video2Brain49.

- The documentation “TYPO3 Inline User Manual”, which is installed with TYPO3 tells what can be done,
but not how it can be done. Tutorials about how to create a Web site exist50 and should be integrated.

Integration

- Typo3 can be hardly integrated with an existing Web site.

User Interface

+ Beside of editing the content in the backend, it is as well possible, to switch the frontside into an editing
mode. Near the content elements, a link is displayed, which opens a window, where the specific content
can be changed without the need to go to the administration interface.

+ Different languages for the user interface can be installed easily with the extension manager.

+ The TemplaVoila extension provides a very innovative approach to combine TYPO3 with pre-created
HTML layouts. The design is displayed in a WYSIWYG environment and the Webmaster can assign the
position of various page elements like navigation controls, header images, banners or the content areas with
a few mouse clicks.

- The user interface and the complexity of TYPO3 requires extensive training for both the Webmaster and
the authors. TYPO3 is by far not selfexplaining.

- The backend of TYPO3 looks a bit old-fashioned. Other systems like Joomla! have a more modern design.

Templates

+ One of TYPO3’s major strength is its template language. TYPO3 distinguishes between design templates
(which are more or less HTML) and templates using TypoScript. TypoScript is a declarative programming
language (and could be lumped together with Prolog, XSLT or SQL) and is used to declare how TYPO3
has to create the output.

+ Images for navigation or banners can be created by TypoScript. This is very useful and can save a lot of
work.

- TYPO3’s strength is at the same time one of the biggest weaknesses. TypoScript is though not hard to
understand, but needs to be learned to make use of the CMS.

- TypoScript can grow fast into a long list of statements, which create the HTML code. I think, this makes
it unnecessary difficult to create templates. oPage tries an approach, where users with HTML knowhow can
create templates without the need of learning another language.

- The mixture of TypoScript and HTML code in the templates makes it sometimes hard to correct bugs.

Web compatibility

+ The HTML code of the CMS is pretty good and has no errors or major warnings.

- TYPO3 can not guarantee, that a page is error free and compatible with Web standards. The quality of the
resulting HTML code lays in the hand of the designer, who is creating the templates with TypoScript.

49 http://www.video2brain.com/
50 http://typo3.org/documentation/document-library/tutorials/

23

http://www.video2brain.com/
http://typo3.org/documentation/document-library/tutorials/

2.5 Web Content management systems

Application

+ Many add-ons for TYPO3 exist. Installation is part of the CMS and is very simple. The “Extension
Repository Kickstarter” helps to create the basic framework for a new extension.

- I did not find a high end online shop made with TYPO3. The eCommerce section of TYPO3’s reference
list only rather simple approaches, (compared to e.g. www.demmer.at or {www.amazon.com).

Performance

+ TYPO3 depends heavily on caching. With caching it is very fast.

2.5.3 Drupal

Drupal was originally a tool for building community sites which makes it a good choice for blogging or
news sites, though it is also capable for building standard websites or ecommerce applications51. Drupal has
a core, which can be extended by plugins (modules) that provide additional features. For example Drupal’s
taxonomy extension allows any content to be classified with a flexible tagging system. Modules interact
with the core system via hooks. Drupal’s core provides protection against many typical security threats, like
SQL injections52. A prominent Web site using Drupal is “Spread Firefox”53.

Currently only estimates about the quantity of Web sites using Drupal are available. The number is at least
higher then 50.00054.

Figure 9: Drupal backend

Web site: http://www.drupal.org

Version evaluated: 4.7.2
License: GPL

System requirements

Web server with PHP4 (4.3.3 or greater) or PHP5, either MySQL or PostgreSQL. Apache web server and
MySQL database are recommended by the developers. The PHP-extension XML is needed for XML-based
51 http://www.openadvantage.org/articles/oadocument.2005-04-20.1805785131
52 http://en.wikipedia.org/wiki/Drupal
53 http://www.spreadfirefox.com
54 http://drupal.org/node/36748

24

www.demmer.at
http://www.drupal.org
http://www.openadvantage.org/articles/oadocument.2005-04-20.1805785131
http://en.wikipedia.org/wiki/Drupal
http://www.spreadfirefox.com
http://drupal.org/node/36748

2 Web Content Management Systems

services like RSS. Support for clean URLs (self speaking URLs) requires the Apache module mod_rewrite
and support for .htaccess.

Strengths and Weaknesses

Drupal shows its strengths on sites with user interaction. Although Drupal is very fresh and provides a
clean user interface with lots of cool stuff (see below), the system itself is written with procedural PHP
code. Drupal does not have a scripting language like TYPO3, but provides quicker results when starting
with a site. I found it hard to rebuild my own Web site with Drupal. It is easier to broaden the features on
your Web site then to adjust Drupal to your needs. If you need what Drupal offers, it does a great job.

Installation

+ The installation of the core files is rather easy: download an archive from the homepage, extract the files
and upload them to the Web server.

- The Drupal archive is compressed with tar and gzip, tools which are unfamiliar to Microsoft Windows
users. An extra version compressed with Zip should be made available.

- The database schema for Drupal is provided in a SQL file, which has to be executed with the database
management program (or PhpMyAdmin). Other CMS create the database and all tables by themselves.

- Database connection settings and other configuration entries have to be set in a PHP file.

- On my local system, processing of .htaccess was limited in the Apache Web server configuration file.
To a new user, it may not be obvious what to do when “Internal Server Error” is displayed. At least
“AllowOverride FileInfo Indexes Limit Options” is needed in httpd.conf.

- Drupal requires at least PHP 4.3.3 (released 25th August 2003), some servers (e.g. Red Hat 7.3) are still
running older versions of PHP (and can not be easily upgraded), which are then not compatible with Drupal.

Documentation

+ The user interface is pretty much self explaining. The Drupal Web site overs comprehensive documenta-
tion and a number of videocasts.

- Online help is available, but only partly translated into German.

User Interface

+ Drupals user interface looks very fresh and provides new useful control items: Text fields can be enlarged
with the mouse, file uploads can be done without a post back of the whole form, suggestions for content
node tags are made while typing them. Content management forms are divided into parts, which can be
folded and expanded.

- There is no kind of separated backend for editing the Web site. The administration interface is integrated
into the Web site itself. I think, this concept makes troubles when creating bigger Web sites.

Integration

- Drupal can not be integrated with an existing Web site.

Templates

+ The position of various content blocks can be defined within the CMS.

+ Complete design themes can be downloaded from Drupals Web site.

+ Alternative template engines can be installed.

- Many sites using Drupal look similar to PHPNuke sites: In the center the content is displayed and the
navigation, the number of current users online and other information is placed in boxes around it.

25

2.5 Web Content management systems

- Creating a new theme requires knowledge of HTML, CSS, the template engine, PHP programming and
the Drupal hook system.

Web compatibility

+ The code of Drupal is completely written in XHTML and has no errors or major warnings.

+ Depending on the design theme used, Drupal is compliant with Section 508 and WCAG Priority 1, 2, 3
rules55.

Application

+ Extensions (here called modules) can be installed with the CMS by just a few clicks. No manual file or
database manipulation needed.

+ Many extensions are installed with the core installation of Drupal and can be activated with just a click.
From the drupal.org Web site, additional extension can be downloaded.

+ The “module builder” add-on creates a skeleton as basis for module development.

+ For ecommerce, a free add-on module is available providing a wide range of features like sub-products,
creditcard and PayPal integration, digital distribution and fulfillment centers.

- Because of the large number of modules, the module installation list can be confusing. Modules should
be grouped into categories like ecommerce or community.

- The extensions from the Drupal Web site have to be installed by hand. Other CMS provide a more
convenient way to include new modules.

Performance

+ PHP offers an extension called mysqli (improved) which is a new interface to access MySQL. This data
access library allows to prepare statements which improves performance, if this statements are repeatedly
executed. Drupal optionally supports the use of mysqli.

+ Caching can be activated when needed. At Web sites with a high number of requests, a minimum cache
time can be set.

2.5.4 Joomla!

Joomla! is a free open source content management system. It includes features such as international
language support, page caching, search engine indexing, printable versions of pages in HTML and PDF
and extensions for blogs, forums, polls, calendars.

Joomla! is a fork56 of Mambo Open Source. The name is a phonetic spelling of “jumla”, which is the
Swaheli word for “all together”. There is no big difference between the latest stable versions of Joomla!
and Mambo. I analyse Joomla!, because the development team as well as a lot of the community sites left
Mambo and switched to Joomla!.

Joomla! can be customized and extended with templates, components, modules and plugins. A template is
a collection of files and is used for the layout of the Web site. Components are applications within Joomla!,
like a reservation system. Modules are used to display certain information on the Web site, e.g. “who is
online” (in some other CMS these are referred as blocks). Plugins are extensions of Joomla! mainly for the
backend. For example the WYSIWYG editor TinyMCE is integrated as a plugin.

Today, no official usage numbers exists. After a post in the Joomla! forum, I got the following answer57:
1. until the Joomla! name was announced about 10 months ago there were zero hits on Google and today

55 Web Content Accessibility Guidelines http://www.w3.org/TR/WAI-WEBCONTENT/
56 After a disagreement in the developing of Mambo, a group of developers took the source code and started working on Joomla!
57 http://forum.joomla.org/index.php/topic,72983.0.html

26

drupal.org
http://www.w3.org/TR/WAI-WEBCONTENT/
http://forum.joomla.org/index.php/topic,72983.0.html

2 Web Content Management Systems

there are 37,900,000
2. Google reports 73,900 hits for the string “Joomla! is Free Software released under the GNU/GPL
License.” which is in the footer of many sites.
3. Google reports 35,000 hits for the string “Joomla! - the dynamic portal engine and content management
system” found in the metatag of many sites.
4. forge.joomla.org reports approx 1,115,000 downloads of Joomla!.

Figure 10: Joomla! backend

Web site: http://www.joomla.org

Version evaluated: 1.0.10
License: GPL

System requirements

Joomla! requires at least Apache 1.13.19, MySQL 3.23.x and PHP 4.2.x (with MySQL, XML and Zlib
support). Joomla! supports all major browsers.

Strengths and weaknesses

I am evaluating Joomla! 1.0.10, which is the latest stable version available and make additional comments
on the current development version (Joomla! 1.5 pre-beta). Joomla!’s strenght are the community functions
(and is somehow similar to Drupal).

Installation

+ All prerequisites for running Joomla! are checked in the installer program. This includes PHP version,
extensions and settings as well as checks for directories and access rights in the filesystem.

+ Sample data is included in the installer and can be imported if needed. This is useful to get an instant
success.

- A database must already exist. The Joomla! installation program does not create a new database, this has
to be done by hand with some other tool.

- Joomla! does not display a page, until the installation files are completely removed from the server. To
avoid to remove the installation program, it should check, if the installation is already configured and request
the admin password. Improvements for this issue will come with version 1.5.

27

http://www.joomla.org

2.5 Web Content management systems

Documentation

+ The Web site offers manuals about the installation of Joomla! Additional information for administrators
is provided as well as a PDF file for authors.

+ Tool tips with context sensitive help are displayed near the input fields.

+ Local help files are available. If needed, the CMS can be configured to display more recent files from the
Joomla! help server.

User management

- Joomla! supports only a couple of pre-defined user groups. These groups can not be changed.

User Interface

+ Joomla! looks nice and cuddly. This can increase the acceptance of Joomla! by the authors.

+ Deleted items are moved to the trash folder and can be restored if they where accidently removed.

+ The next release of Joomla! will make use of AJAX to enrich the user interface.

- The backend is only available in English. Translations of the backend are planned for Joomla! 1.5.

- The main menu is disabled while a record is edited. To switch to another section, the current record has
to be saved (or canceled) first.

- Although the user interface seams to be pretty much self explaining, a tutorial how to create a website
should be added to the local help files.

Integration

- Joomla! can not be integrated with an existing Web site.

Templates

+ Both the frontside as well as the backend design can be changed with template packages.

+ Professionally designed templates are available both commercially and free of charge.

+ Themes can be applied to the whole site or just to a part of it.

- The templates are a mixture of HTML and PHP. In the next major release of Joomla!, a new template
engine is used, where the PHP code in the template is replaced by XHTML compatible tags.

- There is no strict separation of program and HTML code: Templates, components and modules contain
HTML fragments.

- The Web page is composed of “modules” (blocks, which display some data) like menus, polls or “who is
online”. The layout of the content produced by modules can only be changed in the program code.

Web compatibility

+ The HTML code generated by the default installation of Joomla! contains no errors or warnings.

- Currently Joomla! does not comply with many WCAG/508 requirements58.

- HTML code quality depends on the template and extensions used.

Application

+ The extensions directory on the Joomla! Web site lists about 700 items which are very well organized
into categories.
58 http://help.joomla.org/content/view/805/60/

28

http://help.joomla.org/content/view/805/60/

2 Web Content Management Systems

- Extensions have to be downloaded prior to installation. Other systems can download and install extensions
directly.

Performance

+ If available, Joomla! can take advantage of prepared statements with the new iMySQL interface.

+ To increase the performance of the Web site, the administrator can activate content caching in Joomla!

- Caching can not be configured for selected content items, only for the whole site.

2.5.5 eZ publish

eZ publish is a framework for content management systems. Although it is open source, it is still developed,
distributed, and supported by eZ systems, a company providing services around eZ publish.

Two different licensing models are offered by eZ systems: The CMS can be used under the general public
license (GPL)59 and a proprietary license (eZPUL)60. Both allow the licensee to modify the source code,
but the GPL requires to release the changes to the public, while this is not necessary with the proprietary
license. For both licences, a 12 month bug fix guarantee can be bought.

Standard editing features include version control with roll back option, a trashcan, time based publishing,
translation management, preview of pages, automatic image conversion, search engine, self speaking URLs
and dead link checking. The content is organized in a hierarchical tree structure and user permissions define
where it is possible to edit content.

eZ publish has been downloaded more than a million times. eZ systems has more than 1500 international
customers.

Figure 11: eZ publish backend

Web site: http://ez.no

Version evaluated: 3.8.1
License: GPL

59 http://www.gnu.org/copyleft/gpl.html
60 http://ez.no/products/licenses/ezpul_license

29

http://ez.no
http://www.gnu.org/copyleft/gpl.html
http://ez.no/products/licenses/ezpul_license

2.5 Web Content management systems

System requirements

eZ publish requires an Apache Web server version 1.3.x or 2.x, PHP version 4.4.x or above, MySQL version
3.23 or later and ImageMagick or the GD library of PHP for image conversion. Instead of Apache, any other
Web server with PHP support can be used. Alternatively to MySQL the Postgre DBMS version 7.3 can be
installed. For clean URLs, the Apache module mod_rewrite and .htaccess support is required.

The documentation notes, that Apache 2 has to be run in forking61 mode, because PHP is not thread safe.
This may be outdated, as the current PHP version 4.4.1 has thread safety enabled.

Against the installation instructions I did not change the PHP memory limit from 16 MB to 64 MB. All
other tested systems had no problems with a limit of 16 MB and so it seams to be here.

At my first tests, I used the latest PHP version 4.4.2 on Windows, which has a serious bug and eZ publish
installation crashed the Apache Web server. I had to step back to version 4.4.1.

Strengths and weaknesses

Although eZ publish is available under the GPL, a proprietary license and guarantees can be bought, which
is a valuable option for professional users. The biggest drawback of eZ publish is the lack of performance.
As this is comprehensible because of the XML storage, and may not be a problem if the Web site is hosted
on an exclusive server, but it may be a problem when eZ publish is used on a shared Web space. The use of
an PHP-accelerator is highly recommended.

Installation

+ Four different installation procedures are described in the documentation. This includes manual installa-
tion as well as a bundled installation, where eZ published gets installed along with the Web server, PHP and
the DBMS.

+ Path to ImageMagick is automatically detected.

+ The installation program includes eight site packages like corporate-, forum- or shop-site.

- eZ publish requires a rather recent PHP version which may not be available on every Web server.

- As noted in the documentation, PHP 5 is not supported. I did not try to use eZ Publish with PHP 5.

- The database has to be created manually.

- Unicode support for the database has to be activated.

- Only one of the site packages can be installed. It would be nice, if one could choose to install the corporate
Web site package together with the shop and the forum packages.

Documentation

+ The Web site offers comprehensive documentation covering all areas of eZ publish. Video tutorials
describing how to install and use the CMS can be viewed.

- The videos on the Web site have only textual explanations, which makes it a bit boring to follow the
tutorial. Audio comments, as seen at the Drupal Web site, could improve the learning effect.

- In reference to the notes I made in the section system requirements of eZ publish, I do not have the
impression, that the documentation is up to date.

- While the documentation about the end user part of eZ publish is substantial, information about the core
system lacks of details, especially at the system overview, the kernel and the libraries.

61 Apache 1 worked in a similar way: for every request a new instance of the Web server is started. In Apache 2 an extension has to
be installed for that.

30

2 Web Content Management Systems

Data repository

While other CMS store the content as plain text or HTML code, eZ publish saves everything in XML format.

+ New content classes with user defined fields can be created in the backend of the CMS.

+ An application programming interface (API) can be used to access the content repository to import or
extract data.

- Working directly with the database is not possible since the content objects are distributed across multiple
tables.

User Interface

+ The WYSIWYG editor produces XML code instead of HTML code.

+ The design and layout of the backend can be customized the same way as for the frontend.

- The backend user interface looks a bit technical and cold.

Integration

+ OpenOffice documents can be imported into eZ publish using WEBDAV.

+ With WEBDAV it is e.g. possible to mass-upload images and other files using drag and drop of the
Windows Explorer.

+ The program, which creates the document index for the search engine can be configured to include
Microsoft Word and PDF files.

- eZ publish can not be integrated with an existing Web site.

Templates

+ The CMS completely separates Logic, Content and Layout (LCL).

+ Each content class has a default template which can be overridden by a user defined template.

+ Templates for creating PDF files can be defined as easy as templates for HTML output.

Web compatibility

+ Web pages produced by eZ publish use XHMTL and CSS and do not contain any errors.

+ The look and feel of the Web site can be customized by changing the CSS files. A video tutorial
demonstrates this procedure using Makromedia Dreamweaver.

- If displayed with Mozilla Firefox the pages look slightly different as when they were displayed with
Microsoft Internet Explorer.

Application

+ Since content objects are stored in XML format, they can be used to produce other formats than HTML,
e.g. PDF.

+ The CMS includes a Web shop, a forum and a gallery.

+ On the Web site of eZ publish a broad range of extensions are listed.

- There is no wizard which helps to create an extension.

- Extensions have to be installed manually. No user interface exists in the backend for that task.

31

2.6 Goals for oPage

Performance

- Compared to the other systems tested, eZ publish produces a much higher CPU load and is noticeably
slower. A database trace shows, that about 100 queries are executed to display the start page, while the
other systems need about 30 queries.

+ A cluster setup with several servers can be used for high traffic Web sites.

+ Depending on the Web site eZ publish can be tuned for higher performance by optimizing page layout
and cache parameters.

2.6 Goals for oPage

Operating system

oPage must run with minimal system pre-requirements (hard- and software), to allow a widespread use.
It has to be platform independent and must run without any modification at least on Linux and Microsoft
Windows. The framework and the Web sites created with it have to be compatible with all Web servers (here
implemented for Apache and Microsoft Internet Information Server) which supports PHP (running either
as Web server module or as CGI62 program). A typical Web space of an average internet service provider
has to be sufficient for hosting the Web sites.

Data repository

Web sites have to be independent of the database management system (DBMS) and queries have to be
abstracted with a separate layer. At least MySQL has to be supported, since this DBMS is usually offered
by typical internet service providers. It must be possible to share a database with other installations of
oPage as well as other programs. This is important when hosting multiple Web sites in one Web space.

Installation

Installation of the CMS should be as easy as possible. In the best way, the user uploads a bunch of files and
starts a setup script, which asks a few questions, checks prerequisites, installs everything and pops up with
a running Web site.

Web compatibility

HTML pages created by oPage have to follow standards like XHTML and have to be compatible with
all major Web browsers like Mozilla Firefox, Microsoft Internet Explorer, Opera, Safari both on Linux,
Microsoft Windows and Apple Computer operating systems. Content management functions must not rely
on browser or operating system specific features. These features should be made available optionally.

Search engine optimization

Where possible, self speaking path names should be used and ways to improve search engine compatibility
may be provided.

User interface

The user interface should be self explaining. Authors should not need special training and knowledge of
HTML must not be assumed. For the Web site, the content and the editing interface support for multiple
languages have to be provided. A way to enter hyperlinks without HTML coding has to be defined and a
WYSIWYG editor should be integrated for creating prelayouted content and editing static files. The user
interface has to be robust against faulty input and support content managers in keeping a consistent layout
and design on the Web site.

User management

oPage has to provide a flexible method to define access rights.
62 common gateway interface

32

2 Web Content Management Systems

Security

Data entered by regular users must be processed securely, especially when used in SQL queries.

Software architecture

oPage has to be developed using a modular and object oriented software design. This includes the usage
of abstract base classes, the Model View Controller (MVC) concept, the factory principle and other design
patterns. A main goal is Logic Content Layout (LCL) separation through the use of templates and content
classes. Precautions have to be taken to support shared hosting of multiple Web sites on one Web space.
All platform specifics have to be hidden in an abstraction layer. Also it has to be kept in mind, that the
development platform may be different from the hosting system (development takes place on Microsoft
Windows, hosting is done on a Linux system). It has to be possible to share core files among multiple
projects. Customizations have to applied in separate areas to allow easy updates of future versions of
oPage.

Application programming interface

oPage should be easy to use and support developers to get instant results. Web designers should be able
to create Web sites and customize the CMS without the need of programming skills. Software developers
should be able to extend the framework by reusing existing or creating new modules.

2.7 Summary

In this chapter web content management systems have been described. First the basic principles of content
management have been shown: authoring, storing, publishing and workflow. Each term in WCMS has been
explained and the different user roles involved in a Web project were outlined.

Four different open source content management systems have been described and my opinion on their
strengths and weaknesses have been listed.

TYPO3’s major strength is its template language. TYPO3 distinguishes between design templates (which
are more or less HTML) and templates using TypoScript. TypoScript is a declarative programming language
and defines how TYPO3 has to create the output. To create a Web site with TYPO3 the Webmaster first has
to learn TypoScript. The backend of TYPO3 is not very user friendly and looks a bit oldfashioned and may
scare authors at the first look.

Drupal’s origin as a tool for building community sites makes it a good choice for a blogging or news site.
Drupal’s taxonomy extension allows any content to be classified with a flexible tagging system. Although
Drupal is very fresh and provides a clean user interface, the system itself is written in procedural PHP code.
Drupal does not have a scripting language like TYPO3, but provides quicker results when starting with a
site. It is easier to broaden the features on your Web site then to adjust Drupal to your needs. If you need
what Drupal offers, it does a great job.

Joomla! includes features such as international language support, page caching, search engine indexing,
printable versions of pages in HTML and PDF and extensions for blogs, forums, polls, calendars. The
backend of Joomla! looks very well designed and will be even nicer in the next release. Similar to Drupal,
Joomla! has its strenghts in the community features.

eZ publish is an open source CMS and powered by a commercial company. In contrast to the other systems
showed here, eZ Publish uses XML to store content in the data repository. Somehow, this CMS is way
slower than the other systems. Still, tuning tips can be found, but I would recommend a dedicated server.
All in all, eZ publish is a powerful general purpose content management system.

In the last chapter of this section, the design goals for oPage in the fields of system requirements, installation,
compatibility, user interface and management, software architecture and programming interface were
specified.

33

34

3 oPage Framework

This chapter provides a technical description of the oPage framework.

3.1 Structure

Each Web site consists of the oPage core system (which provides the framework), the administration part
(also called the backend) and the frontend. The frontend and the backend are just two different Web sites
using the same framework (see figure 12). The framework and the administration system are not supposed to
be modified by the Webmaster and can thus be shared between different projects. There is no user interface
provided by the framework directly. The administration Web site is pretty much standardized while the
frontend Web site is highly customizable.

Database Filesystem

Framework

Web site
(frontend)

http://www.server.loc

Administration Web site
(backend)

http://www.server.loc/admin

additional functions and external extensions

Figure 12: oPage structure

The framework is located in the directory include/ (see table 6 on page 132 for details) and the administra-
tion system in admin/ (see table 7 on page 132). The Web site files can be stored wherever the Webmaster
wants to (see table 8 on page 133).

Please note, that the color schema of figure 12 is used in all following illustrations.

The content is divided into structured pieces and managed by so called modules. From the storage point of
view, a module represents a database table and has properties like the name of the table and field-names and
-types. Through a base class, all modules provide operations to create (insert), retrieve (query), update and
delete rows (also referred as CRUD63 operations). In object oriented speaking, a module represents a list of
entries and provides operations to manage these entries.

Figure 13 on the following page shows a screenshot of http://www.opage.at. Everything around the content
area is common to all pages and is defined in a base template.

(1) In the top right corner, links to the contact form and imprint of the Web site are displayed (menu).

(2) On the left side, the navigation control shows links to other sections of the Web site (menu).

(3) Also displayed on the left side are two forms, where uses can subscribe the newsletter or search the Web
site (form).

(4) The title of the current page Module is displayed above the content area (page title).

63 CRUD is described at http://en.wikipedia.org/wiki/CRUD_(acronym)

35

http://www.opage.at
http://en.wikipedia.org/wiki/CRUD_(acronym)

3.2 Website

42

3

1

5

6

Figure 13: sample page screenshot

(5) This is the content area. On this page its filled with a list of standard modules of oPage (module).

(6) On the right side, three randomly picked references are displayed, which change every time the page is
created (module).

Figure 14 on the next page presents a brief overview how a page is created with oPage. The script index.php
creates an instance of a module, which uses a data access layer to read records from the associated module
table. The content is merged by the template engine with a layout file to create the final output, which is
sent to the browser. Structured content is always stored in a database while unstructured and binary content
stays in the file system. The templates which are used to generate the Web page are also stored as files.

oPage offers logic, content and layout separation (compare figure 15 on the facing page). There are no
HTML commands embedded into the program. And of course there are no PHP commands in the templates.

3.2 Website

To get an idea, how oPage is used to output a web page, the source code of a simple page is provided and
discussed here.

This paragraph describes listing 1 on the next page: The code between <?php and ?> is executed by the
PHP interpreter. All statements outside the PHP tags would be treated as HTML code. In oPage, PHP files
contain only program code, the layout information is stored in templates.

First the oPage main file include/opage.php is included, which initializes the framework. Then an instance
of CWebpageX is created with the Webpage() method of the global factory. In this example, the values for the
page home are queried from the database. A template file for the layout of Web site is loaded automatically
by the page object.

36

3 oPage Framework

Table
HTMLModul

Template Engine

Template

DB

index.php

CWebpage

Figure 14: oPage dataflow

Database
Filesystem

index.php Template
CSS

CWebpage
CModul, CForm

CAdmin

CTemplateCPage
CContent

CLinks

Layout
(View)

Content
(Model)

Logic
(Presenter)

Figure 15: oPage architecture

To demonstrate the use of a module, an object for metatags is created. Then a filter is set to query only
records where the field name is equal to default. QueryData() creates a SQL statement by combining field
names, table name, filter criterias and order directives, queries the database and stores the result within the
object, from where it is merged into the template of the page object.

For each language used on the Web site, an extension is defined in custom/config.php. For the default
language, the extension is an empty string, the second language has the extension _1. The extension for the
active language can be retrieved with GetLanguage Postfix().

In the current sample, the produced filename would be index.htm for the default language and index_1.htm

for the second language. The content (see listing 2 on the following page) is read with HtmlGetFile() and
appended to the variable $sContent.

Then a second module is created (overwriting the previously created module, which is no longer needed),
all records are queried (the module internally sets filters to query only valid records) and merged with the
template index.tpl (see listing 10 on page 65), which is located in the current directory. The return of the
method $oModul->Output(’index.tpl’) is appended to the content variable.

By assigning the variable $sContent to the placeholder content of the template object, every ocurrence of
content in the template file is replaced with the content of $sContent (puh, a lot of content here...).

Now the page is finished and the result is sent to the Web browser by calling the End() method. Although
in object oriented terms, index.php should contain a derived class of CWebpageX, procedural code is used
to make it easier for beginners.

37

3.2 Website

page
metatags
content
user

CDb

CModul
CContent

index.php

CWebpage
basic.tpl

index.tpl

include/opage.php

CNavigation

CMetatags

CTemplate

CWebpage

custom/config.php
custom/opage.php

CControl

Figure 16: oPage sample page

Listing 1: example index.php

1 <?php

2
3 include_once ’include/opage.php’;

4
5 // create page

6 $oPage = $oFactory->Webpage(’home’, ’CWebpageX’);

7 $oPage->Init();

8 $oPage->Begin();

9
10 // create modul, query and output data

11 $oModul = $oFactory->Modul(’CMetatags’);

12 $oModul->SetFilter(’name’, ’default’);

13 $oModul->QueryData();

14 $oModul->OutputTpl($oPage->Template());

15
16 $sContent = ’’;

17
18 // append static content from html file

19 $sContent .= HtmlGetFile(’index’ . $oApp->GetLanguagePostfix() . ’.htm’);

20
21 // append content from a modul

22 $oModul = $oFactory->Modul(’CContent’);

23 $oModul->QueryData();

24 $sContent .= $oModul->Output(’index.tpl’);

25
26 // assign the content to the page template

27 $oPage->Assign(’content’, $sContent);

28
29 // finish page and send output to browser

30 $oPage->End();

31
32 ?>

Listing 2: example index.htm

1 <html>

2
3 <head>

4 <title>This is a file with content</title>

38

3 oPage Framework

5 </head>

6
7 <!-- remember: only the content between <body> and </body> is used -->

8 <body>

9
10 <h1>Headline</h1>

11 <p>Some static text in index.htm</p>

12
13 </body>

14
15 </html>

3.3 oPage Core

In this section all relevant parts of the oPage framework are described. Figure 17 provides an overview of
the components of oPage

System classes
CApp
CCache
CControl
CDb
CFactory
CHook
CModul
CResource
CSession
CWebpage
CTemplate

System functions
Debug
Error
Tools

Support classes
CDir
CCountry
CCsv
CDate
CImage
CNumber
CTimer

Main include file
oPage

System extensions
Captcha Generation
Database Layer
E-Mail Sending
JavaScript Library
Player for MP3/Video
Tpl Engine

System controls
CAdmin
CBack
CFilter
CForm
CLetter
CMail
CMessage
CNavigation
CPager
CSendmail
CSort
CStory

Content modules
CArticle
CCategory
CContent
CFaq
CIssue
CLinks
CNews
CLexicon
CMetatags
CPerson
CPersonIntro E-Commerce modules

CCart
CCalculate
CCurrency
CDiscount
CItem
COrder
COrderItem
CShipping
CShippingCosts
CShippingMethod
CShippingPayment

System modules
CCounter
CGroup
CModule
CMenu
CPage
CParameter
CProtocol
CRelation
CRight
CUser

Support files
Image Library
Resource Files
Template Library

Support functions
Counter
Download
Popup
Redirect

Community modules
CComment
CForum
CGuestbook
CNewsletter
CEcard
CGallery
CPicture
CQuiz
CSurvey, CPoll

Figure 17: oPage system

Main include file

include/opage.php is the main project file, which has to be included in every script. It configures a few
PHP parameters and sets the global path to the Web site’s root directory. Then it instances the global
factory object, which is responsible for creating all other objects. The Web site specific configuration file is
included and the global application object is initialized as well as the database connection and the counter
object. Also the parameters stored in the database are loaded. If the Web site specific file custom/opage.php

exists, it will be included. In this script additional objects can be created and the oPage framework can be
configured.

39

3.3 oPage Core

System classes

The classes described here represent the core of oPage.

CApp

CApp works as an abstraction layer to hide the different configurations of Web servers. An instance $oApp

is always created by the main include file as a global object. Up to four different sets of application
parameters can be applied, from which $oApp selects the appropriate set depending on the current hostname.
Additionally CApp provides methods to get the active configuration values and retrieve and set HTTP
parameters and cookie values.

CCache

This class is used to store dynamically created content like pages or page fragments in the cache. Currently
the cached content is stored in the file system.

CControl

CControl is the base class for controls. In contrast to modules, controls manage data which is not stored in
a database. Examples for controls are the administration interface, which itself uses controls for managing
forms to enter, to filter, to sort and to page data. Menus can be managed with the navigation controls. A link
to the previous page is provided by the back control. System messages can be collected with the message
control while the mail control is used to send emails.

CDb

This database class provides a facade64 to the underlying database classes. In oPage, data is stored in arrays
of rows which are exchanged with the database by methods like read, insert, update and delete. Other
methods are used to create and alter the database tables. To support other DBMS, a new underlaying class
can be created and used instead of the MySQL class.

CFactory

The factory is used to create instances of classes. No object should be created with the new operator. This
makes it easy to configure objects at a central place. The global factory object is set in the main include file.

CHook

With a derived class of CHook it is possible to react to events. When a newsletter recipient registers, an
event is fired and the hook system is called, where e.g. the latest newsletter can be sent immediately. This
allows Web site specific code to be separated from general code.

CModul

CModul is the base class for modules. A module is used to manage structured content and is usually
associated with a database table. It works as an object relational mapper and provides methods to query data
and to insert, update and delete records. Modules can provide information for creating the user interface. In
general, the class is used in combination with the template engine as a report generator to create the content
of a Web page.

CResource

Its class provides texts for system messages. They are divided into error and notification messages and are
available in English and German. This class is mainly used by the admin control in combination with the
message control.

64 http://en.wikipedia.org/wiki/Facade_pattern

40

http://en.wikipedia.org/wiki/Facade_pattern

3 oPage Framework

CSession

This class implements a custom session handler to store data, which should be available the next time the
user requests a page. An instance of CSession is not automatically created by the main include file, but it
can be created with the factory object in the Web site specific custom/opage.php file.

CTemplate

The main task of the template engine is to merge data with a layout file to create the final output. Templates
contain placeholders which are replaced with data by the template engine.

CWebpage

This class is used to create the output for a Web page. Usually a basic template is loaded (which contains the
common parts of a Web page) and some values are assigned. Then other objects assign more values. Finally
the content is retrieved and sent to the browser. To increase the performance of the Web site, the created
output can be cached in a file and loaded at the next call. A derived class can be used, when additional
features are needed.

System functions

This section describes functions, which are not limited to oPage and can be used in other projects as well.

Debug

Offers a few functions to display debug information. If a parameter is supplied, debug tries to print the
content of the variable. If debug is called without arguments, it displays the call stack.

Error

Is included by default on development servers. It changes the PHP error parameters and installs a custom
error handler. If a fatal error occurs, it displays the call stack using the above debug functions. Currently,
all error messages are displayed in the browser, but it is possible to use other output methods.

Tools

Is a collection of general purpose functions. There are functions to create passwords, encrypt and decrypt
strings, validate email addresses and credit card numbers, tools to load and manipulate html code, support
functions to handle HTTP file uploads, as well as functions to handle arrays, to read, write and copy files.

System extensions

Here are some nice tools, which extends oPage.

Captcha Generation

A Captacha65 is a method to make (relatively) sure, that a form is filled out by a human being and not by a
robot. Here a Captacha is an image with letters, which have to be written into a form field to successfully
submit the form. It can be used to avoid e.g. guestbook spam.

Database Layer

The database layer class provides access to the database. Currently, only a database layer for MySQL is
supported. Layers for Microsoft SQL server, Postgres SQL, Oracle, Sybase and ODBC exist, but have not
been tested. The database layer is part of the PHPlib66 and published as open source under the GPL.

65 Captacha: Completely Automated Public Turing Test to Tell Computers and Humans Apart
66 A collection of PHP classes. http://phplib.sourceforge.net/

41

http://phplib.sourceforge.net/

3.3 oPage Core

E-Mail Sending

For sending emails, oPage uses PHPMailer67, which is a class for sending email using either sendmail, PHP
mail(), or SMTP. It was originaly written by Brent R. Matzelle and is published as open source under the
LGPL.

JavaScript Library

Here are some files with nice JavaScript functions for client side cookie handling, date and number
formating, form evaluation and window opening.

Player for MP3/Video

Three Flash programs are available to play audio and video files directly within the Web site. For audio
(mp3) files, the XSPF player68 is used, which is published as open source under the BSD license. For
playing videos (flv), the FlowPlayer69 is used, which is published as open source under the Apache license.

Tpl Engine

It was originally developed as XTPL by Barnabás Debreceni and published under the GPL. Today it is
mantained by Jeremy Coates as XTemplate70. Because the original code was to slow, the class has been
completely rewritten, but the original template syntax has been preserved.

System modules

Like other modules, system modules are used to manage data stored in a database table. In contrast to
content modules, the system modules manage other data, not directly content of the Web site.

CCounter

Each counter entry can have a type, an URL, a title and the current counter number. A counter can be
increased with the Count() method, the current value can be retrieve with the GetCounter() method.

CGroup

This class is used to manage user groups. Each group can have multiple users as members and can get
assigned multiple rights. To store this assignments (which are m:n relations) the CRelation module is used.

CModul

This module is used by the setup program. In the backend the user can add new modules to be used in
oPage.

CMenu

The CMenu module stores references to page entries. The content of the module can be retrieved and
forwarded to a navigation control.

CPage

With CPage the properties of a page entry are managed. This covers an unique name, the path to the script,
the name of the target frame, a global title, an internal title and special titles to be used in navigation objects.

CParameter

This module stores an unique name, a title and a value for each parameter. Usually only one global instance
of the parameter class is created. In the QueryData method all parameter values are read at once. If a
parameter does not exist, an empty entry is created by the GetValue() method.
67 http://phpmailer.sourceforge.net/
68 http://musicplayer.sourceforge.net/
69 http://flowplayer.sourceforge.net/
70 http://www.phpxtemplate.org/

42

http://phpmailer.sourceforge.net/
http://musicplayer.sourceforge.net/
http://flowplayer.sourceforge.net/
http://www.phpxtemplate.org/

3 oPage Framework

CRelation

The CRelation module is used to store m:n relations of modules. For example, if an entry in the links
module can have more then one category, an instance of the relation class has to be configured (in the
custom factory) to store both link and category ids.

CRight

A entry in the rights tables is defined by a unique name and a title. Each right can be assigned either to a
user or a group. To store this assignments (which are m:n relations) the CRelation module is used.

CProtocol

Currently only the newsletter system uses the protocol module. Sending a newsletter can result in a long
running process on the server. To monitor this process, the newsletter system writes its current activities
into the protocol. Each time a newsletter is sent, a new procotol entry is created and is updated after each
recipient processed. If something fails or the script terminates because of a server timeout limit, the sending
process can be continued using the information from the protocol entry.

CUser

Each user has a unique username, a password and a full name. If the Web site supports multiple languages,
for each user the primary content and administration interface language can be set. Each user can be
assigned to multiple groups and have multiple rights. To store this assignments (which are m:n relations)
the CRelation module is used.

System controls

Controls provide functions as extensions to the core system and to the modules. All controls are derived
from the base class CControl. In contrast to modules, controls manage data which is not stored in a database.

CAdmin

The adminstration control processes the backend forms for managing the content. Two kinds of forms can
be used: The list view, where multiple records can be edited at once, and the detail view, where just one
record can be modified. The admin control retrieves field names and types from the assigned module. The
module is also used to read and write the data to the database table. A filter and a sort control are used
to create a user interface for the WHERE and ORDER BY clauses of the SQL statement. The result set is
divided into pages with the pager control, which is also used to navigate through the records. A back control
provides a link from a sub page to the main section. If necessary (e.g. to implement a 1:n relation), sub
admin controls can be assigned. A modified record can also be stored temporary and displayed for preview.

CBack

A backlink is a link to a previous page including all the parameters to reload the page in the same state as it
was. The back control evaluates the query parameter back and creates the link.

CFilter

The filter control is similar to the form control and handles form fields for a user interface to enter WHERE
parameters. The admin control uses the filter control to create the filter input fields in the list view. The
HTML code for the form fields has to be included in the used templates (see the template fragments
admin/custom/index/filter_*.tpl for details).

CForm

This control processes forms. A form can have a number of fields of different types like text, multiline text,
yes/no, checkbox, tristate, radio, dropdown, username, password, email, date and time, captcha tests and
file uploads. Depending on the field type, server side input validation can be applied. A form can also have
multiple rows. Uploaded images are automatically resized to a predefined width and height. For each field,
the possible minimum, the maximum and a default value can be assigned.

43

3.3 oPage Core

CLetter

The letter control creates navigational links to group data by first letters. In combination with a module,
the control reads all first letters of the selected column and displays only letters as links where records are
available.

CMail

This class integrates the PHPMailer class into oPage (using the facade71 design pattern). E-Mails can be
sent through a SMTP server, with the PHP mail() function or by calling the sendmail program. An instance
of a module can be assigned. When sending the email, the output method of the module is called to merge
the data of the module with the template of the email. It also provides methods to encrypt the email with a
public key system like PGP or GPG.

CMessage

The message control collects system notifications and errors. The admin control gets the error message
from the resource file and puts it into the message control. Later all messages stored in the control are
displayed at once (using a template).

CNavigation

This control is used to create navigational links and menues to navigate through the site. It can handle
a simple flat list as well as an hierarchy of links. The effective functionality of the navigation has to be
provided in a template. With different templates, the same program can create a pulldown menu or a tree
control. The factory is used to create instances of CNavigation and CMenu, which is a virtually derived
class of CNavigation. Details are described in section 3.12 on page 75.

CPager

The pager control is used to create navigational links (a “pager”). The total number of available pages and
the current page have to be set. If the total number of pages is one, the page control does not display any
links. By default, nine page numbers around the current page are displayed at most. The layout of the page
is provided by a template. Standard pager templates are available in the template library.

CSendmail

This class is a generic class to handle data submitted by forms. First the empty form (which is provided in
a template) is displayed. When the form is submitted, various parameters (provided in hidden fields by the
form template) are evaluated. The data can be stored in a CSV file and can be sent to a predefined recipient
and to the email address the user provided.

CSort

The sort control is similar to the filter control and handles form fields to create a user interface for ORDER
BY parameters. For each field submit buttons for sorting upwards and downwards are created and the
current sort order is stored in a hidden field. The sort control is used by the admin control to create the sort
buttons in the list view. The HTML code for the form fields has to be provided in the template used (see the
template fragment admin/custom/index/sort_field.tpl for details).

CStory

The story control is used to split a long HTML page into smaller pages. Content can be set with the
SetHtml() method or loaded from an HTML file. The default page break separator is <!- break ->. A
pager control can be used to create links to navigate between the pages. If the page is created in print mode
(that is when the query parameter print is set to 1), the whole content is displayed as one page.

71 http://en.wikipedia.org/wiki/Facade_pattern

44

http://en.wikipedia.org/wiki/Facade_pattern

3 oPage Framework

Support classes

These support classes are still essential for oPage, but are not related to the field of content management
systems and can be used in other PHP programs as well. Some of these classes are already published as
open source72.

CDir

With CDir the content of directories can be read. Regular expressions can be used to include and exclude
file and directory names from the search. Parameters define, whether only directories, only files or both
directories and files should be listed. If needed, the class can recurse into subdirectories.

CCountry

In include/countryiso.php there are two classes. CCountryIso (which can be created by the factory by
calling the Country Method) and the CStateUs. CCountryIso holds an array of two-letter ISO codes and the
matching country name. The country names are available in German, English, French, Italian and Spanish.
The GetList() returns a list of all countries, while the method GetListEU() returns only the 25 member
states of the European Union. Single ISO codes can be matched with GetCountry() to the corresponding
country name. The CStateUs maintains a list of the states of the USA. The names of this states are only
available in English.

CCsv

Two dimensional arrays can be stored as a CSV file with this class. Existing data in the CSV format can be
read into an array of rows. When column names are used, they are written as first line into the file. Each
value can be enclosed by double quotes. By default, field names are not written, a ; is used as separator and
values are enclosed by double quotes.

CDate

This class is used to format date values. It provides names for weekdays and months in both German and
English. Date values can be converted from string (e.g. results from database queries) to Unix time stamps,
which can be formated and returned as strings. Each supported date format has a unique number. When
calling the format method, either a number of a predefined format or a string, which is used as a parameter
for the PHP date() function, has to be provided.

CImage

Images can be resized with this class. It supports ImageMagick73 and the PHP library GD version 1 and 2.
When using GD, the class provides a cubic resize method, which provides better results than the GD resize
function, but is way slower and not recommended.

CNumber

Similar to CDate, this class is used to format numbers. Different predefined formats are identified by a
number, or the format can be supplied as a string using the printf syntax.

CTimer

A tiny class to measure the execution time of a script. An instance can have multiple timers. The result can
be printed using PHP echo(), or embedded into the page as HTML comments or sent to a syslog service.

Support functions

In this section support scripts are described, which can be used for the frontend of the Web site.

Counter

This script is used to increment counter values. The URL can be used as source of a tracking image.
72 http://www.phpclasses.org/
73 A set of tools for command line image manipulation. http://www.imagemagick.org

45

http://www.phpclasses.org/
http://www.imagemagick.org

3.3 oPage Core

Download

The download script provides a secure method to download files from the Web server. Only files in the
static directory can be downloaded. The script can set a user friendly file name in the HTTP header to
replace the internal CSM file name. Each download can be recorded using the counter module.

Popup

The index.php script is used to display an image in a separate window. The play.php script is used to
display audio and video files.

Redirect

The script is used to count redirects to external Web sites. The URL and some information for the counter
object have to be provided as HTTP parameters to the script.

Support files

The files described here are provided by oPage as a base for the frontend developer.

Images

oPage provides default images for buttons (more, back, zoom, topofpage, print) which can be replaced by
custom images representing the design of the website. Also icons for office documents (doc, xls, odt, pdf,
ppt, rtf, zip), images (gif, jpg, png, psd, tif) and audio and video files (avi, mov, mp3, mpg, ogg, wav) are
available.

Resources

Each resource file contains language dependent strings. These strings can be used in the templates e.g. as
labels for form fields. Each string can be overruled by an entry in a custom resource file. See section 3.5.8
on page 59 for a detailed description of resources.

Template library

The template library is a collection of files which can be parameterized and included in templates: Files
providing various HTML and XHTML DOCTYPEs, HTML header statements, different layouts for pager
controls, various fragments for displaying text, images, download links and inline audio and video players.

Content modules

The following classes are used to manage the content of the Web site. Some of them are more generic (like
CCategory, CContent) then others (like CFaq, CLinks). In the factory class a module can be configured and
(re)used as a “virtually” derived class.

CArticle

An article can have a date, a title, a sub title, a text, an author and a small image. Each article can have
multiple paragraphs (using the CArticleParagraph module, which is virtually derived from CParagraph) and
each paragraph can have many pictures (CArticleParagraphPicture, which is a virtually derived class of the
CPicture module). A paragraph offers fields like title, abstract, text and attachment (with title, filename and
file) and template (used to assign a specific layout to a paragraph).

CCategory

The category module is used to group entries of other modules. For example each shop item can be assigned
to a category like shoes, socks, trousers or t-shirts. Each category can have sub categories. If entries have
to be assigned to more then one category, a relation module has to be used (to store the m:n relation). The
category class is not used directly, instead virtual classes (e.g. CContentCategory, CLinksCategory) are
used, which are created with the factory. If needed, each content module can have an associated category
module.

46

3 oPage Framework

CContent

The class CContent is a generic module and is used to store all kinds of content. It supports fields like title,
abstract, image and up to five groups of fields like subtitle, text, additional text, image (small, medium and
big) and fields for attachments. Content entries can be grouped with the CContentCategory class.

CFaq

Questions and their answers can be managed with the frequently asked questions (FAQ) class. Additionaly
to the title, the question and its answer also the name and email address of the person who asked the question
and the name of the person who answered the question can be stored. If needed, entries can be grouped
with the (virtual) category module CFaqCategory.

CIssue

This module manages issues of e.g. newspapers. Each issue has a title, a release date, a title image, a front
image and a small image can be stored. The CIssue class is usually used in combination with the CArticle
module.

CLexicon

The lexicon is used to store terms and definitions. A brief and a long description and its source can be
retained.

CLinks

This module is used for a link collection to other Web sites. For each URL a title, a description, a small and
a big image can be stored. Links can be grouped with the category module CLinksCategory.

CNews

The news module is similar to the content module, but supports a lot more fields by default, and therefore
is a bit slower then CContent.

CMetatags

Metatags are an (invisible) part of HTML pages and are important for search engines. Possible values are
the author, information when to revisit the page, abstract, description and keywords of the page.

CPerson

The person module is a generic module to store personal data like firstname, lastname, address, telephone
numbers and email addresses. It is used as CNewsletterRecipient or CCustomer (which both are virtual
classes). It also provides methods to create HTML forms and handle post backs to add, update and delete
persons.

CPersonIntro

This class is used in combination with the CPerson module and provides different forms of salutations. For
CCustomer the according name of the virtual class is CCustomerIntro.

Community modules

The modules described in this section all have some kind of user interaction at the front side of the Web site.
To create the forms where the user can enter the data, methods of the base class CModul are used.

CComment

The comment module is used to store user comments to other module entries. With it, comments to news
or shop items can be managed. Each entry can have a type (e.g. news or shop_item) and an identifier (like
the value of news_id of the corresponding news entry).

47

3.3 oPage Core

CEcard

This class is used to store ecards. An ecard has fields like title, abstract, text, image_small and image_big.
Ecards can be displayed on the Web site and linked to a form, where the user can enter name and email
address of a recipient. With methods of CModul, the ecard is merged with a template and sent using CMail.

CForum

Forum entries are stored as comments (CForum is a virtually derived class of CComment). Other
forum classes are used to group forum entries (CForumCategory, which is a virtually class derived
from CCategory) or to store information about forum users: CForumUser (CPerson), CForumUserIntro
(CPersonIntro), CForumUserCategory (CCategory)74

CGallery

In a gallery collections of pictures are managed. Each gallery can have a date, a title, some description,
information about location and photographer and a small image, which is used as a preview. The pictures
are stored in the (virtual) module CGalleryPicture (see CPicture).

CGuestbook

This module stores guestbook entries, which users of the Web site have added. Each entry can have a title,
text and the name and address of the writer.

CNewsletter

The newsletter module is used to store the content of a newsletter. oPage also provides a script, which sends
the newsletter as personalised email to each recipient. The CNewsletter class is a virtual class, in reality
the CNews module is used. The recipients are managed by CNewsletterRecipient (which is CPerson). The
script, which sends the newsletter writes its actions into CNewsletterProtocol (a virtually class derived of
CProtocol).

CPicture

A picture entry can have a title, some text, a unique picture code, a small and a big image and information
about the location and the photographer. Each picture can be assigned to a customer category. This can be
used to display pictures depending on the category of the currently logged in user. Mostly, the module is
used in combination with a gallery entry (the according virtual class is named CGalleryPicture) or with a
paragraph (as CParagraphPicture or CArticleParagraphPicture).

CPoll

A poll is a question with many possible answers. The poll has a title, an abstract, a text and a begin and end
date. It can be specified, that only one or more than one answers can be selected. The number of votes are
counted. A required minimum number of votes can be specified, the current result gets is displayed only
after the limit has been reached. Each selection of an answer is counted in the answer module. For each
answer, the next question, which should come, if the answer was selected, can be set. Also see CSurvey in
paragraph 3.3 on the next page.

CQuiz

A quiz has a title, an abstract, an introduction and a final text, which is displayed when the quiz has been
finished. Each quiz can have multiple questions (CQuizQuestion), each having a title, the question, a text
for right and wrong answer and a number of points, when the question is answered correctly. Each question
can have several possible answers (CQuizAnswers), each with a title and a flag, if this answer is a correct
one.

74 As you can see, with virtually derived classes the number of class files can be reduced a lot.

48

3 oPage Framework

CSurvey

With this module complex surveys can be done. A survey has a title, an abstract, a start and a finish text.
Also a begin and end date can be set. Each survey can have multiple questions (CSurveyPoll) and each
question many answers (CSurveyPollAnswer). Also see CPoll and CPollAnswer.

E-Commerce modules

The modules in this section are all used in an online shop. Some modules are more generic then others and
can be used alone (CItem) or in combination with other modules for other purposes (CCart in combination
with CNews to create a basket of news items). Modules like CShipping can only be used in combination
with CShippingCosts and CShippingPayment.

CCart

The shopping cart is always used in combination with another module, e.g. CShopItem. It stores an id, the
quantity and optionally some ad

CCalculate

This module does not store any information in the database. It provides methods to calculate the item price
in the default and an alternative currency. Also item and order discounts, shipping costs, cash discounts and
the total order amount is computed. The shipping costs can have a fixed value and a value depending on
the total weight or the total item number. All row and total values are calculated as net and gross sum, are
assigned to the template and are also available via class methods.

CCurrency

Currency codes and their exchange rate are stored in this module. A short title (e.g. EUR or ATS), a normal
title (Euro, Österreichische Schilling) and the exchange rate (1, 13.7603) can be stored.

CDiscount

This module provides a convenient way to promote shop items. It is similar to CNews and can manage
stories with references to and discounts for shop items. The class provides fields for title, abstract and up
to ten groups of sub title, text, another text, an URL, a small and a big image. Also a file can be attached.
Numbers of items, which should be displayed along with the text, can be set (separated by comma). The
discount can either be a number or a percentage and can be set for category of items, for items of a certain
region, or for a list of item numbers or just for new items.

CItem

Item fields are title, short title, abstract and text, three images (each in small, medium and large) and
properties like type, color, size, length, width, height, gross and net weight, unit, price, discounted price
and begin and end date. Flags mark the item if it is new, old, available soon, orderable, already sold, in
stock, on sale. If needed, up to three files can be attached. A reference to an instance of a shopping cart
can be set to supply the quantity the user has selected. The item class evaluates the discounts, but does not
calculate row amounts or total amounts. These calculations are done by CCalculate.

COrder

All order specific data is stored with this class. This includes order number, shipping and payment method,
credit card data, total weight, amount, discount, effective shipping costs, cash discount percentage and
amount, the customer number, name and address along with an optional shipping name and address. In the
online shop this class is used as CShopOrder.

COrderItem

The order item module is similar to the item module, but has not the calculation methods. When the order
is submitted, the values of the shop items are copied to the order item object to retain the correct item data

49

3.4 The factory class

as they where when the order was created. For the same reason the title (instead of a reference id) of the
shop item category is stored. In the online shop, this class is used as CShopOrderItem.

CShipping

This module stores the effective offered shipping and payment options. For a number of countries (a string
of two-character ISO codes separated by a blank) a payment method, payment costs (e.g. base costs for
cash on delivery) and a shipping method can be stored. The total of the order has to be higher then an
optional minimum limit, and shipping is free, when the free limit is exceeded.

CShippingCosts

For each shipping method and country combination, shipping costs for different weight classes can be
stored. Fixed costs (independent of the weight) and variable costs per weight unit can be set. To reduce the
number of rows the country field can store multiple two-character ISO codes separated by a blank.

CShippingMethod

With this module the supported shipping methods like Post, Post-Express, DHL, by land, by air etc. are
managed. For each entry a unique name and a title is stored. This class is a virtually derived class of
CCategory.

CShippingPayment

Various payment methods like cash on delivery, payment in advance or credit card can be defined in this
module. Each entry has a unique name, title, description and a text with payment instructions, which is
displayed to the user, after the order was completed. Optionally a cash discount percentage can be set.

3.4 The factory class

The factory is used to create instances of classes. No class should be created with the new75 operator of PHP.

Customization

When the same module (which is a class from the programmers point of view) is used in two different
projects or differently in the same project, module specific customizations have to be applied every time a
new instance of the class is created.

Each project has its own custom factory, where the objects can be customized as needed. Using a factory,
the creation and the configuration of objects can be centralised.

Virtual classes

Imagine two similar category modules like one for shop items (CShopItemCateogry) and one for link
categories (CLinkCategory). One option is to derive both from a common category module (CCategory).
This results in two additional source files.

Using the factory to create an instance of a class called CLinksCateogory, always an instance of CCategory
is created and then named and customized to look like a derived class. When needed the factory can also
be configured to use a real class derived from CCategory.

Derived classes

It is obvious that it is not possible to add new methods to virtually derived classes. But for a real derived
class, a new unique class name has to be used instead of the name of the original class. For instance, the
admin script for the module would have to be changed or another admin script would be needed, to keep
the old script compatible with other projects using the same module.

75 http://www.php.net/manual/en/language.types.object.php

50

http://www.php.net/manual/en/language.types.object.php

3 oPage Framework

The class CLinksCategory, which is derived from CCategory, can be extended as CLinksCategoryX. Every
time CLinksCategory is requested, the factory returns an instance of CLinksCategoryX.

The main task of the factory is to create objects. All framework classes like modules, controls, CDb or
CTemplate can be instanced by the factory.

Listing 3 shows a fragment of the factory class. Two virtual classes CCustomer and CLinksCategory are
instanced using the real classes CPerson and CCategory. The instance of CLinksCategory gets customized:
the field title_menu is not used and the field title_navigation should be displayed in the list view of the
administration interface. Similar methods are used to create instances of controls like menus or forms. Other
classes like the template engine, the class for image manipulation or the data access layer are instanced using
the factory.

Listing 3: Factory.php

1 <?php

2
3 Class CFactory

4 {

5 // Public method to instance a module

6 Function Modul($sClass, $sName = Null, $fInclude = Null)

7 {

8 $oObject = $this->_Modul($sClass, $sName, $fInclude);

9
10 if (!is_object($oObject))

11 return($oObject);

12
13 $oObject->SetClass($sClass);

14 $this->_ModulConfigure($oObject);

15
16 return($oObject);

17 }

18
19 // This method includes the class file and creates the instance. It can be overruled in '

the derived custom factory.

20 Function _Modul($sClass, $sName = Null, $fInclude = Null)

21 {

22 // path to the project root directory

23 global $sRoot;

24
25 if (is_null($fInclude))

26 $fInclude = true;

27
28 switch($sClass)

29 {

30 case ’CCustomer’:

31 if (is_null($sName))

32 $sName = ’customer’;

33 $sClass = ’CPerson’;

34 break;

35
36 case ’CLinksCategory’:

37 if (is_null($sName))

38 $sName = ’links_category’;

39 $sClass = ’CCategory’;

40 break;

41 }

42

51

3.4 The factory class

43 if ($fInclude)

44 {

45 $sInclude = $sRoot . ’include/modul/’ . strtolower(substr($sClass, 1)) . ’.'

php’;

46 if (!file_exists($sInclude))

47 return(null);

48 include_once $sInclude;

49 }

50
51 if (is_null($sName))

52 $oObject = new $sClass();

53 else

54 $oObject = new $sClass($sName);

55
56 return($oObject);

57 }

58
59 // In this method the object gets configured. If needed _ModulConfigure can be overruled'

in a derived class.

60 Function _ModulConfigure(&$oObject, $sClass = null)

61 {

62 if (is_null($sClass))

63 $sClass = $oObject->GetClass();

64
65 switch($sClass)

66 {

67 case ’CLinksCategory’:

68 $oObject->SetFieldUseAdminList(’title_navigation’);

69 $oObject->SetFieldUse(’title_menu’, false);

70 break;

71 }

72 }

73
74 // This is the factory method to create the template engine object.

75 Function Template($sFilename, $sBlock = null, $aParameter = null, $sLanguage = null, '

$sName = null)

76 {

77 global $sRoot;

78 global $oPage;

79
80 $sInclude = $sRoot . ’include/template.php’;

81 if (!file_exists($sInclude))

82 return(null);

83 include_once $sInclude;

84
85 $oTemplate = new CTemplate($sFilename, $sBlock, $aParameter, $sLanguage, $sName);

86 if (is_object($oPage) && is_object($oPage->Template()))

87 $oTemplate->SetVars($oPage->GetTemplateParameter());

88
89 return($oTemplate);

90 }

91 }

92
93 ?>

52

3 oPage Framework

3.5 The template engine

One of the important base components of oPage is the template engine. It was originally developed
as XTPL by Barnabás Debreceni and published under the GPL. It has been completely rewritten for
oPage but the original template syntax has been preserved. The main code is located in the class CTpl
(include/tpl/tpl.php) and is independent from the framework and can be used in other PHP projects. This
class is extended and integrated into oPage with the class CTemplate (include/template.php).

The main task of the template engine is to merge data with a template to create the final output. The template
contains placeholders which are replaced with data by the template engine.

With the template engine all kinds of text based output can be created. Support for different character-
encodings for HTML, XML, RTF or plain text is provided.

Loading and analysing a template requires a lot of effort. The engine provides ways to cache compiled
templates in the file system. If the template has been changed, the engine automatically updates the cached
file.

The template engine is heavily used by the classes CModul and CControl (and their derived classes) and
understanding the template syntax is crucial to create and modify Web sites using oPages.

3.5.1 Replacing variables

Variables are placeholders which are filled by the template engine with values. The names of the variables
are case sensitive and must be enclosed by {}.

The examples listing 4 and listing 5 on the following page illustrate the usage of the engine. An instance of
the template engine is created and the template file gets loaded. Then values are assigned in different ways
and merged with the template. The (main block of the) template gets parsed and the text is sent to the client.

Listing 4: Template Engine sample1.php

1 <?php

2
3 include_once ’include/tpl/tpl.php’;

4
5 // create an instance of the template engine

6 $oTemplate = new CTpl(’sample1.tpl’);

7
8 // assign a value for the title of the page

9 $oTemplate->Assign(’title’, ’Welcome to sample 1’);

10
11 // create and assign an array of values

12 $aValue[’firstname’] = ’Hannes’;

13 $aValue[’lastname’] = ’Dorn’;

14 $aValue[’city’] = ’Vienna’;

15 $oTemplate->Assign($aValue);

16
17 // create and assign another array of values

18 $aData[’title’] = ’Sample 1’;

19 $aData[’filename’] = ’sample1.tpl’;

20 $aData[’text’] = ’Shows how to use replacement of variables.’;

21 $oTemplate->Assign(’data’, $aData);

22
23 // parse main block

24 $oTemplate->Parse();

25
26 // output created content

53

3.5 The template engine

27 echo $oTemplate->Text();

28
29 ?>

Listing 5: Template Engine sample1.tpl

1 <!-- BEGIN: main -->

2 <html>

3
4 <head>

5 <title>{title}</title>

6 </head>

7
8 <body>

9
10 <h1>{title}</h1>

11
12 <p>

13 Firstname: {firstname}

14 Lastname: {lastname}

15 City: {city}

16 </p>

17
18 <p>

19 Title: {data.title}

20 Filename: {data.filename}

21 Text: {data.text}

22 </p>

23
24 </body>

25
26 </html>

27 <!-- END: main -->

Variable names can be strings with the following characters: a-z, A-Z, 0-9, äöüÄÖÜß and _. =<>!#:|&%,/-.

3.5.2 Parsing of blocks

Blocks are used to divide a template into smaller parts. They are defined as HTML comments and start
with <!- BEGIN: blockname -> and end with <!- END: blockname ->. Block names are case sensitive
and have to be unique. A template starts always with the block main and can be divided into smaller parts
by defining sub-blocks. Each sub-block can be parsed multiple. Single blocks can be referenced by their
full qualified block name. The full name of the block used to parse field1 in listing 6 on the next page and
listing 7 on the facing page is main.DATA.field1.

Blocks can be combined by logic operators. Currently & (and) and | (or) operators are supported. Only one
type of operator is allowed at a time.

1 <!-- BEGIN: block1&block2 -->

2 This text is displayed, when block1 and block2 are both parsed.

3 <!-- END: block1&block2 -->

For each combination of block names, the block extended by #header, #footer, #begin and #end are parsed
as well. This is just to have more blocks to be used by module and control classes.

1 <!-- BEGIN: block1&block2&#header -->

2 This text is displayed, if block1 and block2 are both parsed.

54

3 oPage Framework

3 <!-- END: block1&block2&#header -->

Listing 6: Template Engine sample2.php

1 <?php

2
3 include_once ’include/tpl/tpl.php’;

4
5 // create an instance of the template engine

6 $oTemplate = new CTpl(’sample2.tpl’);

7
8 // assign a value for the title of the page

9 $oTemplate->Assign(’title’, ’Welcome to sample 1’);

10
11 // create and assign array of values

12 for($i = 0; $i < 10; ++$i)

13 {

14 // clear data array

15 $aData = array();

16
17 // some data for each row

18 $aData[’row’] = $i;

19
20 if ($i % 2 == 0)

21 $aData[’field1’] = ’Value ’ . $i;

22 else

23 $aData[’field2’] = ’Value ’ . $i;

24
25 // assign data to template

26 $oTemplate->Assign(’data’, $aData);

27
28 // parse subblock for variable

29 foreach(array_keys($aData) as $sName)

30 $oTemplate->Parse(’main.DATA.’ . $sName);

31
32 // parse subblock for the row

33 $oTemplate->Parse(’main.DATA’);

34 }

35
36 // parse main block

37 $oTemplate->Parse();

38
39 // output created content

40 echo $oTemplate->Text();

41
42 ?>

Listing 7: Template Engine sample2.tpl

1 <!-- BEGIN: main -->

2 <html>

3
4 <head>

5 <title>{title}</title>

6 </head>

7
8 <body>

9

55

3.5 The template engine

10 <h1>{title}</h1>

11
12 <!-- BEGIN: DATA -->

13 <p>

14 <!-- BEGIN: row -->Row: {data.row}
<!-- END: row -->

15 <!-- BEGIN: field1 -->Field 1: {data.field1}<!-- END: field1 -->

16 <!-- BEGIN: field2 -->Field 2: {data.field2}<!-- END: field2 -->

17 </p>

18 <!-- END: DATA -->

19
20 </body>

21
22 </html>

23 <!-- END: main -->

Block names can be strings with the following characters: a-z, A-Z, 0-9, äöüÄÖÜß and _=<>!#|&-.

3.5.3 Global and local values

Global and local (see table 2) values are variables provided by the template engine. Local values are related
to the current template file.

Table 2: Global and local values

name description
{global.now} current date and time as unix timestamp
{global.sessionname} current session name
{global.sessionid} current session id
{global.upload_max_filesize} maximum filesize, which can be uploaded to the server
{local.template} current template filename
{local.template_dirname} directory where the template file is stored
{local.template_basename} filename of the template without path
{local.template_basename_filename} filename without path and extension
{local.template_basename_extension} extension of the template filename (usually .tpl)

The oPage specific class CTemplate, which is derived from CTpl provides additional global values like date,
time, weekday, client IP, server name, application directory, current directory, script name or the current
language (see table 3).

Table 3: oPage specific global and local values

name description
{global.date} current date in a language depending format
{global.time} current time in a language depending format
{global.weekday} day of week as language depending string
{global.clientip} IP address of the client computer
{global.servername} name of the server like www.domain.ext
{global.queryseparator} usually ?, but can be set to / in custom/config.php to optimize the page for

search engines
{global.paramseparator} usually &, but can be set to / in custom/config.php to optimize the page for

search engines
{global.http} address of the web server as set in custom/config.php

{global.https} address of the SSL web server as set in custom/config.php

continued on next page

56

3 oPage Framework

Table 3: oPage specific global and local values continued

name description
{global.root} the root directory of the web site as set in custom/config.php

{global.path} relative path to the root directory from the directory where the current
script is stored

{global.dir} current sub directory (below the {global.root} including a closing /

{global.language} short name of the current language as defined in custom/config.php

{global.language_id} language ID as defined in custom/config.php

{global.language_full} full name of the active language as set in custom/config.php

{global.language_postfix} language filename and field extension as defined in custom/config.php

{global.parameter} an array of the current HTTP get or post parameter values as return by
$oApp->GetParameters()

{global.scriptname} name of the active script
{global.requesturi} full request string with scriptname and parameters

3.5.4 encoding values

The engine offers ways to encode data for different output formats like XML, URL encoded, plain text with
and without new lines. This is done simply by appending the variable names with an encoding extension
e.g. {variable#xml}. If necessary, it is possible to add a #latex or #rtf encoding extension for creating
LATEX or RTF76 output.

encoding

{variable#encoded} applys standard URL encoding to the value77. With {variable#doubleencoded} URL
encoding is applied twice (this is used to encode URL parameters on search engine optimized Web sites,
which use / instead of ? and & in queries).

{variable#html} creates HTML encoded output. All characters which have HTML entity equivalents are
translated into these. Usually this is not necessary, but in some situations it may be required. {variable#xml}
encodes the value to be used in XML output. With {variable#text} all HTML tags are removed an only
plain text including newlines remains. {variable#plain} is the same as #text, but without the newline
characters. {variable#slashed} is like #plain, but single quotes ’ are escaped with a / (this encoding is
used for JavaScript strings). {variable#nbsp} is also plain text, but blanks are replaced with .

word wrap

With {variable#text76} text can be limited to lines with a maximum length of 76 characters, which is very
useful for emails (of course, 76 is only a sample, any other lengths can be used).

align text

The command {tpl.align} is used to align text to a certain column: some text{tpl.align#20}some other

text will insert additinal 10 spaces after some text to align some other text at column 20.

3.5.5 formating values

For each variable a format string can be provided using the printf syntax. The format options are appended
before the encoding extension and are separated from the variable name with |: {number|%4d#xml} will
format the date and encode the result for XML. Additionaly to the printf formats, date, number, size and list
options can be used. It is obvious, that # and | can not be used in format strings. Custom format handlers
can be added in a derived class of CTpl.

76 Rich Text Format. Can be read by your word processor.
77 http://www.php.net/urlencode

57

3.5 The template engine

printf

{variable|%4d} is the same as {variable|printf %4d} and formats an integer to a length of at least 4
characters. For a full description of the printf() format see the PHP manual78.

date

{variable|date H:i:s} formats a time value like 23:59:59. For a full description of the date() format
options have a look into the PHP manual79.

number

{variable|number 2, } is equal to PHP function call number_format(value, 2, ’,’, ’ ’) and results in
something like 12 345,67. Once again, the full description of the function number_format() can be found in
the PHP manual80.

size

In oPage the size of files is measured in bytes. To display those values in a more readable format, the
size option can be used. {variable|size KB} or {variable|size MB} formats a number to KB (the value
is divided by 1024) or to MB (the value is devided by 1024x1024). With {variable|size XX} the best
representation of the value is used (Bytes, KB, MB, GB or TB). {variable|size XX 2, } can be used to
apply a number format to the calculated value. This option is as well available for the first two size options
and uses the same format as the PHP function number_format().

list

{variable|list /} splits the value separated by / into HTML <option value=“value”>value</option>
entries.

3.5.6 Parameters

Each template can have a block with default parameters. When the template is included in another template,
this parameters can be overruled by a value provided with the FILE statement. Parameters can be used
within the template with the {PARAM.name} statement.

1 <!-- BEGIN: param -->

2 style="float: left"

3 width="100%"

4 <!-- END: param -->

5
6 <!-- BEGIN: main -->

7 <div style="{PARAM.style}">

8 <table border="0" cellpadding="0" cellspacing="0" width="{PARAM.width}">

9 <tr valign="top">

10 <td>Name:</td>

11 <td>Value:</td>

12 </tr>

13 </table>

14 </div>

15 <!-- END: main -->

78 http://www.php.net/sprintf
79 http://www.php.net/date
80 http://www.php.net/number_format

58

http://www.php.net/sprintf
http://www.php.net/date
http://www.php.net/number_format

3 oPage Framework

3.5.7 Subtemplates

Templates can be included in other templates with the FILE command: {FILE “filename.tpl”}. Common
template fragments are available in include/template/ for HTML header statements, displaying a pager
control, file downloading, displaying images, music and video playing. The administration interface makes
use of subtemplates (see listing 31 on page 133 and listing 32 on page 134). Along with the FILE command
parameters can be provided for the subtemplate which overwrite the default parameter values of the included
template. For example {FILE “filename.tpl” parameter1=“value1” parameter2=“values2”}. This is a
very powerful feature in combination with standard template fragments and the PARAM statement.

1 {FILE "admin/custom/detail/edit_textandimage.tpl" row=""}

2 {FILE "admin/custom/detail/edit_urlandtarget.tpl" row=""}

3 {FILE "admin/custom/detail/edit_filenameandtitle.tpl" row=""}

4 {FILE "admin/custom/detail/edit_textandimage.tpl" row="2"}

5 {FILE "admin/custom/detail/edit_urlandtarget.tpl" row="2"}

6 {FILE "admin/custom/detail/edit_filenameandtitle.tpl" row="2"}

The above sample includes template fragments of the backend to create a user interface for tow groups of
fields: text, image, URL, target and file attachments.

3.5.8 Resources

To support multiple languages it is either necessary to have a template for each supported language or to
have all static texts in a resource file. oPage supports both options, the use of resources is recommended.

The class CTpl searches for a resource file named like the template file, extended by the language short
text and the extension .res. For shop/index.tpl the resource file shop/index#en.res is used. The language
extension is only used when a language has been set.

The structure of a resource file is very simple. In the first line there is the name of the resource, in the
second line there is the according text. This text has to be in one line, line breaks can be done with the

 tag. All HTML tags are allowed to format the text. Even variable placeholders can be used which
are later replaced with values by the template engine. Any blank line found will be ignored.

1 opage_common_noframes

2 This website uses frames. Please use a browser, which supports frames.

3 opage_common_topofpage

4 Top of Page

5
6 opage_common_back

7 back

8 opage_common_next

9 next

Resource names can be strings of the following characters: a-z, A-Z, 0-9, äöüÄÖÜß and _.# .

In the template, resources are referenced by {RES.name_of_the_resource}. Resource strings are provided as
is, URL encoded, double URL encoded, as text, plain or slashed (as described in section 3.5.4 on page 57).

The extended class CTemplate loads a global resource file stored in include/resource/xx.res (xx is a
language abbreviation as defined in custom/config.php like en or de). For the administration interface,
additional resource files for each language are available under admin/custom/resource/xx.res. These
resource files are intended to be changed only by the developers of oPage. Custom resource strings can
be stored in custom/resource/xx.res and custom/admin/resource/xx.res.

In CTemplate a name for the template can be set, which is used to load a template specific resource file from
include/resource/, admin/custom/resource/, custom/resource/ or custom/admin/resource/, where ever a
file exists.

59

3.6 CContent, a generic content module

3.5.9 Caching

In CTpl caching is not active by default. If caching is activated, take care, that the cache directory exists
or can be created by the template engine and is writable by the web server. The created cache file contains
all sub templates, and all resources are replaced. To get a unique filename, the real path of the template is
extended by the current language and the name of the top level block if it is not main. The directory for
the cache files is cache/ and is by default a sub directory of the document root. The part of the template
filename which is below the document root, is prepended by the cache directory name and used as file name
for the cache file. Missing sub directories are created automatically.

Every time, a template is loaded, the date of the cached file is checked. If the original file has been changed,
the template is recreated. Changes of sub templates are not automatically checked, because a template can
contain a number of sub templates. Checking all of them at every call would decrease the performance.

In CTemplate caching is active by default and the cache directory for the templates is set to the sub directory
cache/templates/ of the Web sites root directory (as defined in custom/config.php).

3.6 CContent, a generic content module

The class CContent (see listing 8) is a generic module and can be used to store all kinds of content. It
supports fields like title, abstract, image and up to five groups containing fields like subtitle, text, additional
text, image (small, medium and big) and a field for an attachment.

Listing 8: module CContent

1 <?php

2
3 include_once $sRoot . ’include/modul.php’;

4
5 Class CContent extends CModul

6 {

7 // Constructor

8 Function CContent($sName = null)

9 {

10 // Set default name

11 $this->SetDefault(’content’);

12
13 // Initialize base class

14 $this->CModul($sName);

15
16 // Set default filters

17 $this->SetView(’active’);

18 $this->SetFilter(’display’, ’n’, ’<>’);

19
20 // Set default sort orders

21 $this->SetOrder(’sort’);

22 $this->SetOrder(’date’, ’desc’);

23
24 // Disable unused default fiels

25 $this->SetFieldUse(’category_id’, false);

26
27 // Enabled default fields for listview in the administration interface

28 $this->SetFieldUseAdminList(’id’);

29 $this->SetFieldUseAdminList(’date’);

30 $this->SetFieldUseAdminList(’title’);

31 $this->SetFieldUseAdminList(’sort’);

32 $this->SetFieldUseAdminList(’display’);

60

3 oPage Framework

33
34 // Enable automatic translation of urls to hyperlinks

35 $this->SetTextPrepareUrls();

36 }

37
38 // Set field definitions

39 Function SetFields()

40 {

41 $this->SetField(’id’, ’ID’);

42 $this->SetField(’date’, ’DATETIME’);

43 $this->SetField(’title’, Null, true);

44
45 ...

46
47 parent::SetFields();

48 }

49
50 // Set field properties for list view in administration

51 Function AdminListProperties(&$oAdmin, $sName)

52 {

53 global $oParameter;

54
55 parent::AdminListProperties($oAdmin, $sName);

56
57 switch($sName)

58 {

59 case ’title’:

60 $oAdmin->SetReadonly($sName, true);

61 if (is_object($oParameter))

62 $oAdmin->SetMaxlength($sName, $oParameter->Get($this->GetName() . ’'

_title_maxlength’, $oParameter->Get(’title_maxlength’, 255)));

63 break;

64
65 case ’title_menu’:

66 case ’title_navigation’:

67 $oAdmin->SetReadonly($sName, true);

68 $oAdmin->SetSyncMaster($sName, ’title’);

69 break;

70
71 case ’abstract’:

72 $oAdmin->SetLimit($sName, 150);

73 break;

74 }

75 }

76
77 // Set field properties for detail view in administration

78 Function AdminProperties(&$oAdmin, $sName)

79 {

80 global $oParameter;

81
82 parent::AdminProperties($oAdmin, $sName);

83
84 switch($sName)

85 {

86 case ’title’:

87 if (is_object($oParameter))

61

3.6 CContent, a generic content module

88 $oAdmin->SetMaxlength($sName, $oParameter->Get($this->GetName() . ’'

_title_maxlength’, $oParameter->Get(’title_maxlength’, 255)));

89 break;

90
91 case ’title_menu’:

92 case ’title_navigation’:

93 $oAdmin->SetSyncMaster($sName, ’title’);

94 break;

95
96 case ’date_title’:

97 $oAdmin->SetWidth($sName, $this->GetFieldWidthAdmin($sName, 20));

98 break;

99
100 case ’abstract’:

101 $oAdmin->SetWidth($sName, 137);

102 $oAdmin->SetHeight($sName, $this->GetFieldHeightAdmin($sName, 5));

103 break;

104
105 case ’more’:

106 $oAdmin->SetWidth($sName, 21);

107 break;

108
109 case ’title_sub’:

110 case ’title_sub2’:

111 case ’title_sub3’:

112 case ’title_sub4’:

113 case ’title_sub5’:

114 $oAdmin->SetWidth($sName, $this->GetFieldWidthAdmin($sName, 106));

115 break;

116
117 case ’text’:

118 case ’text2’:

119 case ’text3’:

120 case ’text4’:

121 case ’text5’:

122 $oAdmin->SetWidth($sName, $this->GetFieldWidthAdmin($sName, 108));

123 $oAdmin->SetHeight($sName, 18);

124 break;

125
126 case ’text_ishtml’:

127 case ’text2_ishtml’:

128 case ’text3_ishtml’:

129 case ’text4_ishtml’:

130 case ’text5_ishtml’:

131 $oAdmin->SetDefault($sName, ’y’);

132 break;

133 }

134 }

135
136 // Prepare row data for output

137 Function PrepareRow(&$aRow)

138 {

139 global $oParameter;

140 global $oApp;

141 global $oFactory;

142
143 $aFields = $this->GetFieldList();

62

3 oPage Framework

144 foreach($aFields as $sName)

145 switch($sName)

146 {

147 case ’title’:

148 case ’title_sub’:

149 case ’title_sub2’:

150 case ’abstract’:

151 case ’text’:

152 case ’text2’:

153 $this->PrepareText($aRow, $sName);

154 break;

155
156 case ’image_small’:

157 case ’image_small2’:

158 case ’image_big’:

159 case ’image_big2’:

160 $this->PrepareImage($aRow, $sName);

161 break;

162
163 case ’date’:

164 case ’date_from’:

165 case ’date_till’:

166 $this->PrepareDate($aRow, $sName);

167 break;

168 }

169
170 return(parent::PrepareRow($aRow));

171 }

172 }

173
174 ?>

A module works like a report generator: Data is queried from the related table and merged with a template
to create the output (see figure 14 on page 37). A complete description of all methods provided by a module
as in section 3.8 on the following page.

A module is always derived from the base class CModul, which provides the basic methods common to all
modules. In the constructor CContent() the default name of the module is set. This name is used as name
for the related database table and to identify the module’s block in the template file. Then the base class
is initialized which also calls the SetFields() method. When a module supports date_from and date_till

fields, the default view is set to active. Only elements will be showed where the current time falls between
date_from and date_till (if date_from and/or date_till are set). A filter is set for the field display to query
rows, where the value of display is not n. Next the fields are set which are used to sort the queried records.
The CContent module provides additional fields to associate rows with entries of a category module, but
this fields are not used by default, so they are deactivated.

As seen in listing 1 on page 37, an instance of a module is created by calling the Module() method of the
factory object. It could be created by calling the new operater, but this is not recommended. The factory not
only creates an instance of the class, it initializes and customizes the new object (see section 3.4 on page 50
for details on CFactory).

3.7 CApp

The class CApp is a system abstraction and configuration layer. It provides a simple and consistent interface
to retrieve system, Web server, PHP and Web site specific information like hostname, document and
application root directory, browser name and version, client IP address, language and query parameters.

63

3.8 CModul

Four different arrays with configuration values can be provided to the constructor of the class:

- Production: This set of parameters is for the real active Web site and gets used, if no other settings apply.
- Staging: The staging server is a testing platform, where the Web site can be tested by the customer before

it is moved to the production site.
- Testing: The testing site is an internal server of the development company.
- Development: This settings are used, when the Web site is running on the computer of a software

developer and is automatically selected, when the hostname is localhost.

Each parameter set is defined in custom/config.php and can have a list of hostnames for which the parameter
should be used. A typical config.php looks like listing 9.

Listing 9: config.php sample

1 <?php

2
3 $aProduction = array

4 (

5 ’install’ => false,

6 ’setup’ => true,

7 ’server’ => ’example.com,www.example.com,mail.example.com’,

8 ’http’ => ’http://www.example.com’,

9 ’https’ => ’https://www.example.com’,

10 ’Query_Separator’ => ’/’,

11 ’Param_Separator’ => ’/’,

12 ’Root’ => ’/’,

13 ’ErrorHandling’ => ’no’,

14 ’DB’ => ’mysql’,

15 ’DB_Server’ => ’mysql.example.com’,

16 ’DB_User’ => ’example’,

17 ’DB_Password’ => ’password’,

18 ’DB_Database’ => ’example_com’,

19 ’DB_Table_Prefix’ => ’’,

20 ’Mail_Server’ => ’mail.example.com’,

21 ’Language’ => array(’0’ => ’Deutsch’, ’1’ => ’English’),

22 ’Language_Short’ => array(’0’ => ’de’, ’1’ => ’en’),

23 ’Language_Postfix’ => array(’0’ => ’’, ’1’ => ’_1’),

24 ’Language_Default’ => 0,

25 ’Admin_Language’ => array(’0’ => ’Deutsch’),

26 ’Admin_Language_Short’ => array(’0’ => ’de’),

27 ’Admin_Language_Postfix’ => array(’0’ => ’’),

28 ’Admin_Language_Default’ => 0

29);

30
31 ?>

This class also manages the language settings for the frontend and the backend Web site. The active
language is retrieved from a cookie, if the cookie is not set, the default language of the browser is used.
If no valid language is available, the default language as set in config.php is used.

Also some search engine optimization is done here: Query_Separator and Param_Separator can be set to /

instead of ? and &. This makes a query look like an ordinary path which can result in better search engine
positions.

3.8 CModul

The class CModul, located in the include directory, is the base class of all modules and provides a wide
range of methods:

64

3 oPage Framework

- Base
- Table
- Fields
- Query
- Output
- Prepare
- Database

A module is associated with data. This is usually a database table, but can also be data from the session
object or from some other source. Each derived class provides a list of field names and their types. To query
data, the user of a module can provide parameters for the different query clauses. For each field flags can be
set, which define if the field should be used in various scenarios. Additional tables can be joined. Complex
filters to return specific data can be set. Also the order of the returned rows can be defined. To limit the
returned result set the number of the first row and a maximum number of rows can be assigned. All rows
returned are stored as name value pairs in a list of two-dimensional arrays.

With the output methods, the module works like a report generator. It queries data and merges the records
with a template. All blocks parsed are beneath a block named after the modules name. If the data set is
empty, only the block empty gets parsed. If records are available, the HEADER gets parsed once, for each
row the DATA section is applied and finally the FOOTER. For an example see listing 1 on page 37, listing 2 on
page 38 and listing 10.

Each record gets prepared before it is merged with the template. Date and number values are formated, IDs
are replaced with values from associated modules (which are queried separately) and URLs in text fields
are transformed into click able hyperlinks. Fields containing file names of images and other binary files,
properties like the path name, file size and image dimensions are made available to the template through
special fields.

Listing 10: index.tpl sample

1 <!-- BEGIN: main -->

2
3 <!-- BEGIN: content -->

4
5 <!-- BEGIN: empty -->

6 <p>Nothing found!</p>

7 <!-- END: empty -->

8
9 <!-- BEGIN: HEADER -->

10 <p>This text is above the records.</p>

11 <!-- END: HEADER -->

12
13 <!-- BEGIN: DATA -->

14 <!-- BEGIN: title --><h2>{DATA.title}</h2><!-- END: title -->

15 <!-- BEGIN: text --><p>{DATA.text}</p><!-- END: text -->

16 <!-- END: DATA -->

17
18 <!-- BEGIN: FOOTER -->

19 <p>This text is beneath the records.</p>

20 <!-- END: FOOTER -->

21
22 <!-- END: content -->

23
24 <!-- END: main -->

65

3.8 CModul

3.8.1 Base

If no module name is specified by the constructor, the default name gets used, which has to be set in the
derived class. Then the value for the field name postfix of the active language is set. This postfix is appended
to all multilanguage fields. A global table prefix can be used to separate oPage tables from other projects. A
global language postfix and table prefix can be set in custom/config.php. The module name is also used as
name for the database table. Then SetFields() is called, which adds the fields to the module. This method
is usually extended in the derived module classes.

The module name should represent a hierarchy. For instance the category module of CContent should have
the class CContentCategory and the name content_category. This name is used to create the path for related
files of the module. The images of the content category class are stored in static/content/category/images

whereas other binary files are stored in static/content/category/files. Another path can be set, which is
used e.g. by the newsletter tool to locate the various newsletter templates.

Since the number of binary files can get high and directory access may slow down, it is possible to set an
upload level. By default, this level is one, which means the images are stored in a sub directory of the
image directory. The name of this sub directory is created with the first letter of the the filename (which is
a random MD581 value).

Modules can be virtually derived from standard modules (using the factory) like the above mentioned
content category. For this classes, it is necessary to set the class name (e.g. CContentCategory), since
the class itself would only report the name of the real class (CCategory). If two content classes CContent1
and CContent2 are used, and both classes share the same categories, a class group name can be set to
CContent. So CContentCategory gets used by both classes (this is used in the administration part of oPage).

A module can have a number of sub modules (which are normal modules). This can be used to resolve 1:n
and n:m relations. A newspaper article can be stored as an article with a number of paragraphs and each
paragraph can have a number of pictures. First the class names of the sub modules are added with AddSub().
If the flag $fSub is set to true, the sub modules are created and added with AddModul() automatically when
needed.

With SetLog() the logging flag can be turned on. If a global instance $oLog of the module CLog exists, every
data modification action like insert, update or delete is recored in the log. By default logging is deactivated.

The trace parameter defines if the activities of the module and the required time have to be reported. Output
can be sent to the browser, invisible as html comment or to the local syslog service of the server. By default
tracing is disabled.

If the debug flag is set, the database queries and the returned data is displayed in the browser. This is
useful when developing a Web site. When the explain flag is set, the database class sends each query with
an EXPLAIN request to the database and displays detailed information, how the DBMS will execute the
query.

All described settings can be adjusted differently in derived module classes, in the global and in the local
factory as well as in the page scripts.

3.8.2 Table

A global prefix for table names can be defined in custom/config.php to separate oPage specific tables from
other tables in the same database. This prefix is set with SetTablePrefix($sValue) in the constructor. The
name of the table itself is also set in the constructor with SetTable($sValue), where $sValue is filled with
the name of the module.

With AddTable($sValue) additional tables can be set and with AddJoin($sTable, $sJoin, $sOn) the
appropriate join parameters can be defined. Please note, that other ways of combining two tables are
available: You can query data and set it with SetReplacement() (used to solve n:1 relations). Another

81 MD5 is a method for creating hash values, containing 32 hexadecimal characters like ffb2b2b0a963555a005cb1bd447ad44a

66

3 oPage Framework

option is to add submoduls with AddSub($sModul, $sId, $sForeignId) to create a hierarchy of modules
(to solve 1:n or m:n relations).

The complete table statement is generated by GetTable($iTable), where $iTable specifies either all tables
(0) or a specific table (>0).

3.8.3 Fields

The base constructor calls the SetFields() method which adds the module fields by calling SetField(

$sName, $sType = Null, $fMultilanguage = Null, $sField = Null). The parameter $sName is the inter-
nal name of the field, as it will be used in the templates. With the parameter $sType the field type can
be specified. Only types as defined in SetFieldType() are allowed. Example types are TEXT (which is the
default type), ID, FOREIGNID, FOREIGNNAME, TEXTBOX, IP, CHECKBOX, RADIO, YESNO, DISPLAY, USERNAME, PASSWORD,
EMAIL, DATETIME, IMAGE, FILE, REAL, INTEGER and a couple more. By default, $fMultilanguage is false. If
it is true, the database field name is extended with the language postfix (as defined in custom/config.php).
$sField specifies the name of the field as it is in the database table and can be omitted, if it is the same as
the internal name.

The method in the base class adds fields like username, IP address and timestamps to track when the record
has been created and when it has been last modified.

Similar to the table prefix, a global field prefix can be set, which is automatically prepended to each field.
This is needed when additional tables are joined with the modules main table.

With SetFieldUse($sName, false) a field can be deactivated completely. Some (optional) fields are added
in SetField() but are deactivated in the constructor. Such fields can be activated with a call to SetFieldUse(

$sName). Other SetFieldUse() functions exist to control usage in admin list and detail views.

The complete field list statement is generated by GetFields($aFields = Null). If the parameter $aFields
is an array, only the field names in the array are used, otherwise all active fields are used. A list of all
available field names is returned by GetFieldList().

3.8.4 Query

The method QueryData() is used to retrieve the content managed by the module from the database. It collects
all the information needed and passes it to the database class, which creates the appropriate SQL statement
and sends it to the DBMS. The queried records are returned to the module and stored in a two-dimensional
array.

QueryData() prepares all elements of an SQL query:

- table (from, join)
- fields (columns)
- filter (where)
- groups (group by)
- order (order by)
- limit (limit)

GetTable() returns a string with all involved tables (at least one) and the matching join operators. Get

Fields() returns a list of active names (see section 3.8.3 for details) including the internal field name and
the column name as it is in the table (if they are different). Analogous functions exist for filter, groups, order
and limit.

If needed, uniqe rows can be forced by calling SetDistinct().

With the SetFilter() method, a WHERE clause with elements like values and operators can be set for
each field. Filter entries are combined with the and operator. An array of filter entries can be provided as
parameter, together with compare operators (e.g. =, <> or like) and logical combine operators (and or or),
which again can contain an array of filters.

67

3.8 CModul

The following source code shows an example for a complex filter:

1 $aFilter = array();

2 $aFilter[] = array(’value’ => ’y’, ’compare’ => ’<>’);

3 $aFilter[] = array(’compare’ => ’is null’, ’escape’ => false, ’slashes’ => false);

4 $this->SetFilter(’preview’, $aFilter);

Similar to the filters, the group and order by clauses can be set. For group by, only the field name has to
be set with SetGroupBy(), and the result can be retrieved with GetGroupBys(). The appropriate methods for
order by are SetOrder() (with an optional parameter desc) and GetOrders(). These functions also check, if
a field is used at all and only return needed field names.

Since it is not practical to display hundreds of records on one page, oPage offers ways to devide the result
set into parts. SetLimit() sets an offset from where to start and the maximum number of rows to be returned.
The GetLimit() method returns the appropriate SQL statement, which produces the limited result set. With
SetRows() the number of rows per page can be set. The current page is set with SetPage() and can be
retrieved from a pager control, which provides the user interface in combination with a template. GetPage()
returns the current page and GetPages() returns the total number of available pages. If records are displayed
in more than one column, the number of columns can be set with SetCols().

1 // 10 rows per page

2 $oModul->SetRows(10);

3 // 3 columns per row

4 $oModul->SetCols(3);

5 // but never the first 5 records and only a maximum of 50 records

6 $oModul->SetLimit(5, 50);

7 // set the active page to 2

8 $oModul->SetPage(2);

9 // read the data

10 $oModul->QueryData();

11 // output the total number of pages: 2

12 echo $oModul->GetPages();

13 // output current page: 2

14 echo $oModul->GetPage();

15 // output number of records: 20

16 echo $oModul->CountRows();

In the above example, the records 36 (1 + 5 + 10 rows times 3 columns) to 65 (36 + 10 rows times 3 columns
- 1) would be read. Because of the limit set, only the records 36 to 55 are queried.

3.8.5 Output

A number of output methods exist, but only Output() and OutputTpl() are intended to be called directly.
Output() receives the filename of a template, creates a template object and forwards it to OutputTpl().

OutputTpl() requires a certain block structure to merge the result set with the template. For a sample
template see listing 10 on page 65, for a full description see listing 33 on page 135. In brief, OutputTpl()
parses the module blocks name of the modul#header, name of the modul and name of the modul#footer.
Beneath these blocks module blocks like empty, HEADER, DATA or FOOTER can be used to represent the desired
layout. If the current DATA block contains a BETWEEN block, this block is parsed after each record except for
the last record.

If the result set is empty, only the empty block is parsed. For the first available record, the HEADER block is
parsed, then for each row the DATA block or, if a row specific DATA{iRow}82 block exists, this block is used.
The rows, which should be processed can be limited with SetOutputRowFrom() and SetOutputRowTo().

82 replace {iRow} with a one based row number

68

3 oPage Framework

Independent from the database query, the rows in the result set can be grouped with SetGroup(). For each
field, an optional array of possible values can be provided, so only rows containing those values are merged
with the template, which has to provide a block named according to the value. If this array contains the
value _default_, all rows with other values are merged against the _default_ block. For each group an
optional array of values can be used to create a combined one. E.g. aCombine[’A’] = array(’A’, ’Ä’

); assigns the letters ’A’ and ’Ä’ to the same group ’A’. For each group value a header and a footer block
are parsed: GROUP_{group}_begin and GROUP_{group}_end.

If the result set contains a numeric column named level, a block for each level can be used beneath the
DATA block. If a maximum level is set with SetLevels(), a level block between LEVEL1 and LEVEL{iLevels}is
parsed. The field level can be retrieved from a database column or a calculated in PrepareData().

If a section number higher then one is set with SetSections(), for each section a ROW{iSection} is
parsed. The iSection is one based and is calculated using the row number: $iSection = ($iRow - 1)

% $iSections + 1;. If two sections are used, the template blocks ROW1 and ROW2 are parsed alternately.

SetCols() define, how many records are displayed in one row. If this number is higher than one, a COL block
for each column is required. listing 11 illustrates a table with three columns.

Listing 11: table.tpl sample

1 <!-- BEGIN: main -->

2
3 <!-- BEGIN: modul -->

4
5 <!-- BEGIN: HEADER -->

6 <table>

7 <thead>

8 <tr>

9 <th>Column1</th>

10 <th>Column2</th>

11 <th>Column3</th>

12 </tr>

13 </thead>

14 <tbody>

15 <!-- END: HEADER -->

16
17 <!-- BEGIN: DATA -->

18
19 <!-- BEGIN: COL1 -->

20 <tr>

21 <td>{DATA.field}</td>

22 <!-- END: COL1 -->

23
24 <!-- BEGIN: COL2 -->

25 <td>{DATA.field}</td>

26 <!-- END: COL2 -->

27 <!-- BEGIN: COL2_empty -->

28 <td> </td>

29 <!-- END: COL2_empty -->

30
31 <!-- BEGIN: COL3 -->

32 <td>{DATA.field}</td>

33 </tr>

34 <!-- END: COL3 -->

35 <!-- BEGIN: COL3_empty -->

36 <td> </td>

37 </tr>

69

3.8 CModul

38 <!-- END: COL3_empty -->

39
40 <!-- END: DATA -->

41
42 <!-- BEGIN: FOOTER -->

43 </tbody>

44 </table>

45 <!-- END: FOOTER -->

46
47 <!-- End: modul -->

48
49 <!-- END: main -->

If the result set contains the field template it is supposed that it contains the name of a template block. The
value of the template field is extended with the name of the module. For example field template of the
module content can contain one of the following values: heading1, heading2 or heading3. Additionally to
the main block a #begin and #end block is parsed.

The following listing provides an example:

1 <!-- BEGIN: DATA -->

2 <!-- BEGIN: content_heading1 -->

3 <h1>{DATA.title}</h1>

4 <!-- END: content_heading1 -->

5 <!-- BEGIN: content_heading2 -->

6 <h2>{DATA.title}</h2>

7 <!-- END: content_heading2 -->

8 <!-- BEGIN: content_heading3 -->

9 <h3>{DATA.title}</h3>

10 <!-- END: content_heading3 -->

11 <p>{DATA.text}</p>

12 <!-- END: DATA -->

For each field a number of blocks can be used. field#empty (replace field with the name of a field) is
parsed if the field has no value. All other blocks are only parsed if the field contains a value. Value
dependent blocks are possible with field=value where value has to be replaced with a specific value.

If the fields value is not 0, the block field<>0 is parsed, if it is not 1, then field<>1 is parsed. The
field#yes and field#no blocks are only parsed for YESNO type fields.

1 <!-- BEGIN: DATA -->

2 <!-- BEGIN: field#empty --><!-- END: field#empty -->

3
4 <!-- BEGIN: field#header --><!-- END: field#header -->

5 <!-- BEGIN: field#begin --><!-- END: field#begin -->

6
7 <!-- BEGIN: field=value#begin --><!-- END: field=value#begin -->

8 <!-- BEGIN: field=value --><!-- END: field=value -->

9 <!-- BEGIN: field=value#end --><!-- END: field=value#end -->

10
11 <!-- BEGIN: field<>0#begin --><!-- END: field<>0#begin -->

12 <!-- BEGIN: field<>0 --><!-- END: field<>0 -->

13 <!-- BEGIN: field<>0#end --><!-- END: field<>0#end -->

14
15 <!-- BEGIN: field<>1 --><!-- END: field<>1 -->

16
17 <!-- BEGIN: field --><!-- END: field -->

18

70

3 oPage Framework

19 <!-- BEGIN: field#end --><!-- END: field#end -->

20 <!-- BEGIN: field#footer --><!-- END: field#footer -->

21
22 <!-- BEGIN: field#notempty --><!-- END: field#notempty -->

23
24 <!-- BEGIN: field#yes#begin --><!-- END: field#yes#begin -->

25 <!-- BEGIN: field#yes --><!-- END: field#yes -->

26 <!-- BEGIN: field#yes#end --><!-- END: field#yes#end -->

27
28 <!-- BEGIN: field#no#begin --><!-- END: field#no#begin -->

29 <!-- BEGIN: field#no --><!-- END: field#no -->

30 <!-- BEGIN: field#no#end --><!-- END: field#no#end -->

31 <!-- END: DATA -->

3.8.6 Prepare

For each field a format can be defined using SetFormat($sName, $Value), where $sName is the internal
name of the field and $Value is the format. $Value can either be a string (for TEXT fields) or an integer (for
DATE and NUMBER fields).

Automatic replacing of URLs with clickable hyperlinks can be globally turned on for all TEXT fields with
SetTextPrepareUrls() or for an individual field with SetPrepareUrls($sName). Of course it is possible to
turn it on for all fields and turn it off for specific fields. Usually a module is supposed to produce HTML
output, with SetTextMode() all HTML tags get removed from the TEXT fields.

Categories to group records can be managed with the module CContentCategory. All IDs and category
titles can be queried from this module and assigned to the CContent module with SetReplacement($sName,

$aValue), where $sName is the name of the FOREIGNID field.

In the method OutputPrepare(&$aRow) the current row gets prepared. This method calls Prepare Data1(

$aRow), PrepareReplace($aRow), PrepareData($aRow) and PrepareRow($aRow). Each of this function
can be overrided in the derived module classes. See listing 8 on page 60 for an example of PrepareRow().
There the methods PrepareText(), PrepareImage() and PrepareDate() are used. Similar functions are Pre

pareFile() and PrepareNumber(). Others exist to calculate net and gross prices (PreparePrice()), to modify
URL addresses (PrepareUrl()) or to update creation and modification timestamps (PrepareRowEdit()).

3.8.7 Database access

In the typical usage of oPage, it is not necessary to access the database tables directly. The modules base
class provides methods to create, read, update and delete records.

The Insert() method creates a new record using data provided in a name/value array. The ID of the inserted
row is returned in the array.

To read records from the modules table into an array, the Query() method can be used, which has only one
parameter for a WHERE clause and returns all active fields from the table. The Query2() method has an
additional parameter for the names of the fields, which should be read.

The Update() method is similar to the insert method, but has an additional (optional) parameter for the name
of the ID field (which is id by default). The update method also takes care of binary files stored in the file
system. When an IMAGE or FILE field is updated with a new value, the old file is deleted from the file
system.

To delete records two methods are available. The Delete() method uses the filter parameter for the where
clause of the delete SQL statement. The extended method DeleteX() is similar to the Insert() and Update()

methods and uses a name/value array and an optional name for the ID field. Both methods delete the related
binary files from the file system.

71

3.8 CModul

3.8.8 Sub modules (1:n relations)

In many cases content needs to be distributed over several database tables. For example a newspaper article
can have several paragraphs and each paragraph can be embellished with pictures. Each article can be
assigned to a number of categories. This results in five database tables:

- article
- paragraph
- picture
- category
- category_article

Here we have a 1:n relation between article and paragraph and between paragraph and picture. Between
article and category there is a m:n relation, which is stored in the table category_article.

To represent these tables, five modules are used, one for each table:

- CArticle
- CArticleParagraph (derived from CParagraph)
- CArticleParagraphPicture (derived from CPicture)
- CArticleCategory (derived from CCategory)
- CArticleCategoryArticle (derived from CRelation)

Modules can be added to other modules as sub modules with AddModul()83:

1 $oPicture = $oFactory->Modul(’CArticleParagraphPicture’);

2 $oParagraph = $oFactoy->Modul(’CArticleParagraph’);

3 $oParagraph->AddModul($oPicture, ’id’, ’paragraph_id’);

4 $oArticle = $oFactory->Modul(’CArticle’);

5 $oArticle->AddModul($oParagraph, ’id’, ’article_id’);

Now, when a article is merged with the template, all paragraphs are queried where the article_id is equal
to the id of the article. And for each paragraph, the pictures are loaded where paragraph_id is equal to the
id of the paragraph.

In the template the paragraph block has to be within the data block of the article.

1 <!-- BEGIN: main -->

2
3 <!-- BEGIN: article -->

4 <!-- BEGIN: DATA -->

5 <h1>{DATA.title}</h1>

6
7 <!-- BEGIN: paragraph -->

8 <!-- BEGIN: DATA -->

9 <p>{DATA.text}</p>

10
11 <!-- BEGIN: picture -->

12 <!-- BEGIN: HEADER -->

13 <div>

14 <!-- END: HEADER -->

15 <!-- BEGIN: DATA -->

16 <img src="{global.root}{DATA.image_small}" width="{DATA.image_small#'

width}" height="{DATA.image_small#height}">

17 <!-- END: DATA -->

18 <!-- BEGIN: FOOTER -->

19 </div>

83 A good place to set sub modules is in the custom/factory.php, where all other configuration takes place.

72

3 oPage Framework

20 <!-- END: FOOTER -->

21 <!-- END: picture -->

22
23 <!-- END: DATA -->

24 <!-- END: paragraph -->

25
26 <!-- END: DATA -->

27 <!-- END: article -->

28
29 <!-- END: main -->

An extended method is AddSub(). It adds the module as a sub module (by calling AddModul()), but also
offers parameters to define, if the sub module should be used in the frontend, in the backend admin listview
or detail view. If it is used m:n relations should be added with AddRelation(), which adds the module as sub
module by calling AddSub() and also creates a form field in the admin to manage the entries in the relation
table.

Figure 18 on the following page provides a screenshot of an article with two paragraphs each having two
pictures. A more detailed description of the administration forms can be found in section 3.16.1 on page 85.

3.9 CPage

The content of a Web site is usually grouped into different sections. These can be news, product information,
links or a guestbook. In oPage this content is managed in modules.

The module page is used to manage page entries. Each page has a unique name, a path, a target frame
and four kinds of titles. The field title_display (e.g. Homepage) is used for internal purposes and is not
displayed on the Web site. In the field title the official title of the page (e.g. Welcome to my Web site)
is stored. The values in title_navigation and title_menu are used in horizontal (title_navigation) and
vertical (title_menu) navigational controls (for more details see section 3.12 on page 75).

The path value of a page entry points to a PHP script, which creates the output of a Web page. This script
is a controller84 and can combine a number of modules. For example on the entry page of a Web site (the
homepage) the top five entries of the news module are displayed along with two upcoming events and three
featured products of the shop section (see also listing 1 on page 37).

3.10 CWebpage

In this context the CWebpage class is responsible for creating the surrounding environment for the other
controls and modules (see figure 13 on page 36). The layout of the Web page is stored in a template which
can be merged with the output of the modules and controls (which can use additional templates).

This class is typically used as follows:

1 $oPage = $oFactory->Webpage(’home’, ’CWebpageX’);

2 $oPage->Init();

3 $oPage->Begin();

4
5 $sContent = ’my content’;

6
7 $oPage->Assign(’content’, $sContent);

8 $oPage->End();

The class CWebpageX is a derived class which extends the base class with project specific code. For
example, a default page template is set with SetTemplate() in CWebpageX. In the initialization process the

84 Model-View-Controller pattern

73

3.10 CWebpage

Figure 18: Backend administration form for an article (detail view)

data of the page named home are loaded (using the module CPage). With Begin() the template is loaded
and parameters (see table 4) are assigned to the template (and are also passed along to the modules). In
the Begin() method of the project specific class, the navigation controls can be created and filled with data.
By calling End() the custom class calls the created navigation controls and the base class calls the template
engine to prepare the final page. The result can be compressed, written to the cache or just sent to the client.

Table 4: template parameters provided by CPageWeb

parameter description
{query} Array with all parameter values sent with the query (e.g. ?id=1 becomes query.id

with value 1)
continued on next page

74

3 oPage Framework

Table 4: continued

variable description
{global.backuri} The URL of the current page including all relevant parameters; can be used as

backlink parameter in links to other pages
{global.backurix} The same as {global.backuri} but with special search engine optimized para-

meter format (basically it uses / instead of ? and &).
{global.printuri} This variable has the same value as {global.backuri}, but with an additional

parameter print=1 and is used to link to the printer friendly version of a page.
{global.printurix} The search engine optimized version of {global.printuri}.
{page} Array with all fields from the module page.
{page.robots} If the parameter print is set to 1, this value contains noindex,nofollow to exclude

the printer friendly version from being indexed, or index,follow otherwise.

3.11 CControl

CControl is the base class for controls. Similar to CModul a control always has a name which must relate
to a block in the template. In the constructor GetParameter() is called, which can be overrided in the drived
class, and is used to prepare the parameters for the control.

The method Output() loads the template and calls OutputTpl(), which merges the data of the control with
the prepared template. Usually only the block name of the control is parsed, but if the blocks name of the

control#header or name of the control#footer exist, the are parsed as well.

OutputValue() is not used in the base class, but can be called by the derived controls to parse blocks for
every values.

1 <!-- BEGIN: someblock -->

2 <!-- BEGIN: field#empty --><!-- END: field#empty -->

3
4 <!-- BEGIN: field#header --><!-- END: field#header -->

5 <!-- BEGIN: field#begin --><!-- END: field#begin -->

6
7 <!-- BEGIN: field=value --><!-- END: field=value -->

8
9 <!-- BEGIN: field<>0#begin --><!-- END: field<>0#begin -->

10 <!-- BEGIN: field<>0 --><!-- END: field<>0 -->

11 <!-- BEGIN: field<>0#end --><!-- END: field<>0#end -->

12
13 <!-- BEGIN: field --><!-- END: field -->

14
15 <!-- BEGIN: field#end --><!-- END: field#end -->

16 <!-- BEGIN: field#footer --><!-- END: field#footer -->

17
18 <!-- BEGIN: field#notempty --><!-- END: field#notempty -->

19 <!-- END: someblock -->

3.12 CNavigation

The control CNavigation is used to create navigational links.

One way to add entries is calling the Add() method directly. The usual way is to pass an instance of
CNavigation to the AddNavigation() method of the Webpage() class, which loads data from the page module
and calls the Add() method of CNavigation. The control currently supports two types: navigation (which
is the default) and menu. Depending on the type set, either the page field title_navigation or title_menu
are used.

75

3.12 CNavigation

With the factory method Control() both CNavigation and the virtual class CMenu can be created. While
CNavigation uses title_navigation, CMenu uses title_menu.

The navigation control parses a number of blocks to offer a wide range of possible navigational elements:

1 <!-- BEGIN: control -->

2
3 <!-- BEGIN: empty -->

4 <!-- END: empty -->

5
6 <!-- BEGIN: HEADER -->

7 <!-- END: HEADER -->

8
9 <!-- BEGIN: DATA -->

10
11 <!-- BEGIN: FIRST -->

12 <!-- END: FIRST -->

13
14 <!-- BEGIN: BETWEEN -->

15 <!-- END: BETWEEN -->

16
17 <!-- BEGIN: LAST -->

18 <!-- END: LAST -->

19
20 <!-- END: DATA -->

21
22 <!-- BEGIN: FOOTER -->

23 <!-- END: FOOTER -->

24
25 <!-- END: control -->

Within DATA.FIRST, DATA.BETWEEN, DATA.LAST and DATA the following blocks are parsed:

1 <!-- BEGIN: path#empty -->

2 <!-- END: path#empty -->

3 <!-- BEGIN: path -->

4 <!-- END: path -->

5
6 <!-- BEGIN: parameter#empty -->

7 <!-- END: parameter#empty -->

8 <!-- BEGIN: parameter#begin -->

9 <!-- END: parameter#begin -->

10 <!-- BEGIN: parameter -->

11 <!-- END: parameter -->

12 <!-- BEGIN: parameter#end -->

13 <!-- END: parameter#end -->

14
15 <!-- BEGIN: target#empty -->

16 <!-- END: target#empty -->

17 <!-- BEGIN: target -->

18 <!-- END: target -->

19
20 <!-- BEGIN: title#empty -->

21 <!-- END: title#empty -->

22 <!-- BEGIN: title -->

23 <!-- END: title -->

24

76

3 oPage Framework

25 <!-- BEGIN: isnew#empty -->

26 <!-- END: isnew#empty -->

27 <!-- BEGIN: isnew#yes -->

28 <!-- END: isnew#yes -->

29 <!-- BEGIN: isnew#no -->

30 <!-- END: isnew#no -->

31
32 <!-- BEGIN: onclick#empty -->

33 <!-- END: onclick#empty -->

34 <!-- BEGIN: onclick -->

35 <!-- END: onclick -->

36
37 <!-- BEGIN: sub_empty -->

38 <!-- END: sub_empty -->

39
40 <!-- BEGIN: sub_notempty -->

41 <!-- END: sub_notempty -->

42
43 <!-- BEGIN: sub_expanded -->

44 <!-- END: sub_expanded -->

45
46 <!-- BEGIN: sub_collapsed -->

47 <!-- END: sub_collapsed -->

48
49 <!-- BEGIN: sub -->

50 <!-- BEGIN: DATA -->

51 <!-- BEGIN: FIRST -->

52 <!-- END: FIRST -->

53 <!-- BEGIN: BETWEEN -->

54 <!-- END: BETWEEN -->

55 <!-- BEGIN: LAST -->

56 <!-- END: LAST -->

57 <!-- END: DATA -->

58 <!-- END: sub -->

59
60 <!-- BEGIN: sub_always -->

61 <!-- BEGIN: DATA -->

62 <!-- BEGIN: FIRST -->

63 <!-- END: FIRST -->

64 <!-- BEGIN: LAST -->

65 <!-- END: LAST -->

66 <!-- END: DATA -->

67 <!-- END: sub_always -->

68
69 <!-- BEGIN: separator -->

70 <!-- END: separator -->

71
72 <!-- BEGIN: break -->

73 <!-- END: break -->

Below the blocks active and inactive the full range of blocks described above can be used.

1 <!-- BEGIN: active -->

2 <!-- END: active -->

3 <!-- BEGIN: inactive -->

4 <!-- END: inactive -->

77

3.13 CMail

For each entry, an entry specific subblock is parsed (with all blocks described above), if available. If no
entry specific block is available, a _default_ block is parsed (with all blocks described here), if available.

1 <!-- BEGIN: name -->

2 <!-- END: name -->

3 <!-- BEGIN: _default_ -->

4 <!-- END: _default_ -->

Example navigational controls are horizontal or vertical link lists, pulldown menus or tree controls (or
whatever comes up your mind).

3.12.1 CWebpage->AddNavigation()

The class CWebpage provides the method AddNavigation(), which adds an entry from the module CPage
to a navigation control. The instance of the control and the name of the page have to be provided. To
create a hierarchy (e.g. for a tree control), the name of the parent entry can be provided. Possible additional
parameters are a query string and the height as well as the width of the entry.

3.12.2 CModul->FillNavigation()

This method queries data from the modules table and adds it to the navigation control. Optional an URL and
a target frame name can be provided. If necessary, the name of a parent navigation entry can be supplied.
By default, the field title is used as title, but it can be changed by providing a different fieldname. Filters
can be set, but this filters are not used by default.

3.13 CMail

Sending email through a Web site is not only used by Web mail sites. A Web site should inform about new
guestbook and forum entries or deliver new orders from the online shop. Another application is sending a
newsletter or providing an interface to send ecards.

In oPage emails are sent with PHPMailer85, which is a commonly used class to send emails via the PHP
mail() function, sendmail or a SMTP server.

The PHPMailer is integrated into oPage by the CMail control class (using the facade86 design pattern). An
instance of the email class is usually created with the factory method Control(). The type of mail server can
be set in custom/config.php. Important CMail methods (beside the obvious SetFrom(), SetTo(), SetCc(),
SetBcc(), SetSubject() and AddAttachment()) are SetValues(), Send() and SendTpl().

With SetValues() an array of name-value pairs are set, which will be later assignd to the template engine
and merged with the email templates. Send() accepts up to two filenames of templates. The first one is
mandatory and can either be a HTML or a plain text template (you have to call SetHtml() to tell the class).
The second one is optional (but recommended, if the first template is a HTML template) and can only be
a plain text template. Send() creates an instance of the template engine for each template and passes this
objects to SendTpl().

1 <!-- BEGIN: subject -->This is the subject<!-- END: subject -->

2 <!-- BEGIN: recipients -->hannes@dorn.cc|Hannes Dorn;office@dorn.cc<!-- END: recipients -->

3 <!-- BEGIN: main --><!-- BEGIN: mail -->

4 Firstname: {DATA.firstname}

5 Lastname: {DATA.lastname}

6 Text:

7 {DATA.text}

8 <!-- END: mail --><!-- END: main -->

85 Originally written by Brent R. Matzelle and released under LGPL. See http://phpmailer.sourceforge.net/
86 http://en.wikipedia.org/wiki/Facade_pattern

78

http://phpmailer.sourceforge.net/
http://en.wikipedia.org/wiki/Facade_pattern

3 oPage Framework

If no specific subject has been set with SetSubject(), SendTpl() parsed the subject block of the template
by calling OutputTpl(). The blocks from, recipients, recipients_cc and recipients_bcc are parsed using
OutputTpl() (this can be turned of by calling SetFromFromTemplate() and Set RecipientsFromTemplate()).
If a from value has been set, it gets overwritten while the recipient addresses from the template are just
appended to the existing recipient lists. Then the main block is parsed to produce the body for the email. If
PGP encryption is enabled by SetPgp(), the body content is encrypted with through PGP before it is sent
with PHPMailer.

OutputTpl() is similar to the same named method of CModul. First the OutputTpl() method of the parent
class is called (see section 3.11 on page 75), then the controls values are assigned to the template engine
and the template blocks are parsed.

3.13.1 CModule Mail

Consider the following scenario: An email should be sent if a new guestbook entry is made. The email
should contain the newly added data. In the common way, the data from the form would be assigned to the
mail control. A simplier way is to assign the guestbook module to the mail control with SetModul().

In SendTpl() the from email address and the recipient (if not already set) are queried from the module
(GetEmailFrom(), GetEmailAdmin()). OutputTpl() calls the OutputTpl() method of the module. All module
blocks (see section 3.8 on page 64) can be used below the mail blocks from, recipients, recipients_cc,
recipients_bcc and mail

1 <!-- BEGIN: subject -->Guestbook entry: <!-- BEGIN: mail --><!-- BEGIN: guestbook --><!-- '

BEGIN: DATA -->{DATA.title}<!-- END: DATA --><!-- END: guestbook --><!-- END: mail -->'

<!-- END: subject -->

2 <!-- BEGIN: recipients --><!-- BEGIN: mail --><!-- BEGIN: guestbook --><!-- BEGIN: DATA -->{'

DATA.email}<!-- END: DATA --><!-- END: guestbook --><!-- END: mail --><!-- END: '

recipients -->

3 <!-- BEGIN: recipients_bcc -->office@dorn.cc<!-- END: recipients_bcc -->

4 <!-- BEGIN: main --><!-- BEGIN: mail --><!-- BEGIN: guestbook --><!-- BEGIN: DATA -->

5 <!-- BEGIN: firstname -->Firstname: {DATA.firstname}

6 <!-- END: firstname --><!-- BEGIN: lastname -->Lastname: {DATA.lastname}

7 <!-- END: lastname --><!-- BEGIN: text -->Text:

8 {DATA.text}

9 <!-- END: text -->

10 {DATA.date_created} {DATA.ip_created}<!-- END: DATA --><!-- END: guestbook --><!-- END: mail'

--><!-- END: main -->

As seen in the listing above, the field title of the guestbook module is used in the subject of the email. The
email field is used as recipient and in the main block the guestbook module is used to produce the body of
the email.

In CModul methods exist for sending the email: MailToAdmin() and MailToUser().

If an action name (add, confirm, update or delete) is provided, MailToAdmin() checks, if an email should be
sent (parameter entry {name of the module}_emailtoadmin_{name of the action}). Then an instance of
CMail is created, the module is set with SetModul(), and the control is passed along to MailSend(), where
the Send() method is called.

MailToUser() is similar to MailToAdmin(). If an action name (add, confirm, update, delete) is provided,
the system looks into the parameter module, if an email should be sent (parameter {name of the module}_

emailtouser_{name of the action}). Then it checks, if the field email is used and has a value. A display
name for the recipient is created using the fields firstname, lastname and company. If none are used or all
are empty, the email address is used as display name. An instance of CMail is created and the module and
the recipient are set. Then the control is passed along to the MailSend() method, where the Send() method
of the mail control is called.

The module is supposed to contain records already. Multiple records will result in multiple emails sent.

79

3.14 CForm

MailSend() is rather simple, but can be overruled in a derived module class. It is called with an instance of
CMail, the filename of a template, the mode (possible values are MailToAdmin, MailToUser and Null) and
optionally the name of the current action.

3.14 CForm

oPage provides a versatile form engine. The class CForm is derived from CControl and processes input
types like plain and multiline text, date, number and currency, yes/no, tristate and radio buttons as well as
images and other binary uploads. More specialized types exist like a country selector, an email address
verifier or a creditcard validator. With a CAPTCHA field the form engine can check, that a human user has
submitted the form.

The provided data is validated according to the field types. For each field, an error block in the template is
parsed if a required field is empty or the content is invalid. For example, yes/no fields can only have the
values ’y’ or ’n’. If an invalid value is provided, the form control changes the value to ’n’. If a field should
contain an URL address, the validate method uses regular expressions to check, if the provided string looks
like a valid address.

Date values are converted from the users native date format to the database format ’yyyy-mm-dd’. Similar
conversions are done for time and number values.

Uploaded images can be automatically resized. On Web sites, only GIF, JPEG or PNG images should be
used, if the provided image is in a different format it gets automatically converted into a JPEG file.

oPage provides template fragments to build plain and tabular forms. The provided example shows the PHP
script (listing 12) and the according template (listing 13 on the next page) for adding entries to a guestbook.

Listing 12: Guestbook add script

1 <?php

2
3 // include project settings and base classes

4 include_once ’../include/opage.php’;

5
6 // Create the page object

7 $oPage = $oFactory->WebPage(’guestbook_add’, ’CWebPageX’);

8 $oPage->Init();

9 $oPage->Begin();

10
11 // Create the template object

12 $oTemplate = $oFactory->Template(’add.tpl’);

13
14 // Create the module and activate the fields, which should be used in the form

15 $oModul = $oFactory->Modul(’CGuestbook’);

16 $oModul->SetFieldUseFormMust(’firstname’);

17 $oModul->SetFieldUseForm(’lastname’);

18 $oModul->SetFieldUseForm(’city’);

19 $oModul->SetFieldUseForm(’region’);

20 $oModul->SetFieldUseForm(’country’);

21 $oModul->SetFieldUseFormMust(’email’);

22 $oModul->SetFieldUseForm(’url’);

23 $oModul->SetFieldUseForm(’title’);

24 $oModul->SetFieldUseFormMust(’text’);

25
26 // Create form

27 $oForm = $oFactory->Control(’CForm’, ’guestbook’);

28 $oModul->AddForm($oForm);

29

80

3 oPage Framework

30 // Add an additional field: captcha

31 // This field is not used by the module, but helps to prevent automatic guestbook spam

32 $oForm->AddField(’captcha’, ’CAPTCHA’);

33
34 // Process form

35 if (!$oForm->IsSubmitted())

36 $oForm->OutputTpl($oTemplate);

37 elseif (!$oForm->Validate())

38 $oForm->OutputTpl($oTemplate);

39 elseif (!$oModul->AddAction($oForm, $oTemplate, ’email.tpl’, ’email_user.tpl’))

40 $oForm->OutputTpl($oTemplate);

41 else

42 {

43 // Redirect the browser to the main guestbook page

44 Header(’Location: ’ . $oApp->GetRoot() . $oApp->GetDir() . ’index.php’);

45 exit();

46 }

47
48 // Insert content into main template

49 $oTemplate->Parse();

50 $oPage->Assign(’content’, $oTemplate->Text());

51
52 // Finalize and output the generated page

53 $oPage->End();

54
55 ?>

Listing 13: Guestbook add template

1 <!-- BEGIN: main -->

2
3 <!-- BEGIN: submitted -->

4 <p>Thank you for your entry!</p>

5 <!-- END: submitted -->

6
7 <!-- BEGIN: error -->

8 <p>Ups, there is something wrong!</p>

9 <!-- END: error -->

10
11 <!-- BEGIN: guestbook -->

12
13 <p>Thank you for adding something to our guestbook. Please fill out the form and click '

save. Please note, that for security reasons, you can not write HTML code in our '

guestbook.</p>

14
15 {FILE "include/template/form/#begin.tpl" class="guestbook"}

16 {FILE "include/template/form/tabular/#begin.tpl" cellpadding="2" width="100%"}

17 <colgroup>

18 <col width="30%">

19 <col width="70%">

20 </colgroup>

21 {FILE "include/template/form/tabular/custom_begin.tpl"}

22 <!-- BEGIN: firstname#begin -->

23 {FILE "include/template/form/edit_label.tpl" name="firstname" title="Firstname"}

24 &

25 <!-- END: firstname#begin -->

26 <!-- BEGIN: lastname#begin -->

81

3.14 CForm

27 {FILE "include/template/form/edit_label.tpl" name="lastname" title="Lastname:"}

28 <!-- END: lastname#begin -->

29 {FILE "include/template/form/tabular/custom_between.tpl"}

30 <!-- BEGIN: firstname -->

31 {FILE "include/template/form/edit_input.tpl" name="firstname" title="Firstname" '

width="20" style="width: 48%;"}

32 <!-- END: firstname -->

33 <!-- BEGIN: lastname -->

34 {FILE "include/template/form/edit_input.tpl" name="lastname" title="Lastname" width'

="20" style="width: 48%;"}

35 <!-- END: lastname -->

36 {FILE "include/template/form/tabular/custom_end.tpl"}

37 {FILE "include/template/form/tabular/custom_begin.tpl"}

38 {FILE "include/template/form/edit_label.tpl" name="city" title="City"}

39 &

40 {FILE "include/template/form/edit_label.tpl" name="region" title="Region:"}

41 {FILE "include/template/form/tabular/custom_between.tpl"}

42 {FILE "include/template/form/edit_input.tpl" name="city" title="City" width="20" '

style="width: 48%;"}

43 {FILE "include/template/form/edit_input.tpl" name="region" title="Region" width="20"'

style="width: 48%;"}

44 {FILE "include/template/form/tabular/custom_end.tpl"}

45 {FILE "include/template/form/tabular/edit_select.tpl" name="country" title="Country:" '

style="width: 97%;"}

46 {FILE "include/template/form/tabular/edit_input.tpl" name="email" title="Email:" width'

="50" style="width: 97%;"}

47 {FILE "include/template/form/tabular/edit_input.tpl" name="url" title="Url (without http'

://):" width="50" style="width: 97%;"}

48 {FILE "include/template/form/tabular/edit_textarea.tpl" name="text" title="Your text:" '

width="60" height="10" style="width: 97%;"}

49 {FILE "include/template/form/tabular/edit_captcha.tpl" title="Captcha:" width="50"}

50 {FILE "include/template/form/tabular/edit_submit.tpl" title="save" width="50" style="'

width: 97%;"}

51 {FILE "include/template/form/tabular/#end.tpl"}

52 {FILE "include/template/form/#end.tpl"}

53
54 <!-- END: guestbook -->

55
56 <!-- END: main -->

3.14.1 CModul Form

The base class CModul provides a number of methods to simplify acquiring and processing of user input.
For a full list of all form related methods have a look at listing 14.

Listing 14: modul.php form methods

1 Function AddAction(&$oForm, &$oTemplate, $sTplAdmin, $sTplUser, $fParse = null)

2 Function AddActionWithValues($aValues, $sTplAdmin = null, $sTplUser = null)

3 Function AddActionGetValuesFromForm($oForm)

4 Function AddActionPrepareValues($aValues)

5 Function AddActionExists($aValues)

6 Function AddActionInsert(&$aValues)

7 Function AddActionMailToAdmin($sTemplate)

8 Function AddActionMailToUser($sTemplate, $sField = null)

9
10 Function ConfirmCheck(&$oForm, &$oTemplate, $fParse = null)

82

3 oPage Framework

11 Function ConfirmAction(&$oForm, &$oTemplate, $sTplAdminAdd, $sTplAdminUpdate, $fParse = '

null)

12 Function ConfirmActionGetValuesFromForm($oForm)

13 Function ConfirmActionPrepareValues($aValues)

14 Function ConfirmActionExists($aValues)

15 Function ConfirmActionUpdate(&$aValues)

16 Function ConfirmActionMailToAdmin($sTemplate)

17 Function ConfirmActionMailToUser($sTemplate, $sField = null)

18
19 Function UpdateAction(&$oForm, &$oTemplate, $sTplAdmin, $sTplUser, $fParse = null)

20 Function UpdateActionGetValuesFromForm($oForm)

21 Function UpdateActionPrepareValues($aValues)

22 Function UpdateActionExists($aValues)

23 Function UpdateActionUpdate(&$aValues)

24 Function UpdateActionUpdated()

25 Function UpdateActionMailToAdmin($sTemplate)

26 Function UpdateActionMailToUser($sTemplate, $sField = null)

27
28 Function RemoveAction(&$oForm, &$oTemplate, $sTplAdmin, $sTplUser, $fParse = null)

29 Function RemoveActionGetValuesFromForm($oForm)

30 Function RemoveActionPrepareValues($aValues)

31 Function RemoveActionExists($aValues)

32 Function RemoveActionDelete(&$aValues)

33 Function RemoveActionMailToAdmin($sTemplate)

34 Function RemoveActionMailToUser($sTemplate, $sField = null)

A form to provide data for a module can be initialized with AddForm(), ConfirmForm(), UpdateForm() or
RemoveForm(). Module fields, which should be used in the form, have to be activated in the module with
SetFieldUseForm() before initializing the form. Fields, which are not used by the module are not used in
the form, even if they where activated.

Action methods like AddAction(), ConfirmAction(), UpdateAction() and RemoveAction() offer support for
typical user interaction. This methods extract the data from the provided form object, update the record
in the database and send an email to the user and a notification to the owner of the Web site (email
sending is configurable in the parameter module). Other action methods like AddActionWithValues(),
ConfirmActionWithValues(), UpdateActionWithValues() and RemoveActionWithValues() provide similar
operations and use an array of data instead of a form object.

All methods listed in listing 14 on the preceding page can be overrided in derived classes with custom
implementations.

3.15 CPager

The CPager is a tool to divide the result set of a module into smaller parts, e.g. like Google does it with its
search results.

A typical scenario looks as follows:

First the pager control looks for the active page number in the GET and POST parameters. This is done
automatically when calling the base class constuctor of CControl. Then the number of rows, which should
be displayed per page, is set for the module using SetRows(). With this value, the total number of pages
can be calculated in the module and retrieved with GetPages(). This number is assigned to the pager with
SetPages(). Then the active page can be retrieved from the control with GetPage() and assigned to the
module with SetPage().

The pager control automatically checks, if the page number is within the limits. If it is lower then one, it is
set to one, if it is higher then the number of available pages, it is set to the maximum.

83

3.15 CPager

Listing 15: pager.php sample

1 <?php

2
3 // ...

4
5 // Create the pager control

6 $oPager = $oFactory->Control(’CPager’);

7
8 // Create the content module

9 $oModul = $oFactory->Modul(’CGuestbook’);

10 $oModul->SetRows($oParameter->GetValue(’guestbook_rows’, $oParameter->GetValue(’rows’))'

);

11 $oPager->SetPages($oModul->GetPages());

12 $oModul->SetPage($oPager->GetPage());

13 $oModul->QueryData();

14 $oModul->OutputTpl($oTemplate);

15
16 // Output the pager

17 $oPager->OutputTpl($oTemplate, null, ’1’);

18 $oPager->OutputTpl($oTemplate, null, ’2’);

19
20 // ...

21
22 ?>

Listing 16: pager.tpl sample

1 <!-- BEGIN: main -->

2
3 <!-- BEGIN: pager1 -->

4 {FILE "include/template/pager_small.tpl"}

5 <!-- END: pager1 -->

6
7 <!-- BEGIN: guestbook -->

8 <!-- BEGIN: empty -->

9 Sorry, the guestbook is empty.

10 <!-- END: empty -->

11 <!-- BEGIN: DATA -->

12 {modul.row_down}. <!-- BEGIN: text -->{DATA.text}<!-- END: text -->

13 <!-- BEGIN: firstname -->{DATA.firstname}<!-- END: firstname -->

14 <!-- BEGIN: lastname -->{DATA.lastname}<!-- END: lastname -->

15 <!-- BEGIN: firstname|lastname -->
<!-- END: firstname|lastname -->

16 <!-- BEGIN: email --><img src="email.gif" border'

="0"><!-- END: email -->

17 <!-- BEGIN: BETWEEN --><hr><!-- END: BETWEEN -->

18 <!-- END: DATA -->

19 <!-- END: guestbook -->

20
21 <!-- BEGIN: pager2 -->

22 {FILE "include/template/pager_small.tpl"}

23 <!-- END: pager2 -->

24
25 <!-- END: main -->

Listing 17: pager_small.tpl template block sample

1 <!-- BEGIN: PARAM -->

84

3 oPage Framework

2 data="DATA."

3 style=""

4 <!-- END: PARAM -->

5
6 <div class="pager" style="{PARAM.style}">

7 <!-- BEGIN: first --><a href="{global.root}{global.scriptname}{{PARAM.data}param_first}"'

onmouseover="SetStatus(’{RES.opage_common_first}’);return(true);" onmouseout="'

SetStatus();return(true);"><< <!--'

END: first -->

8 <!-- BEGIN: previous --><a href="{global.root}{global.scriptname}{{PARAM.data}'

param_previous}" onmouseover="SetStatus(’{RES.opage_common_back}’);return(true)'

;" onmouseout="SetStatus();return(true);"><</span'

> <!-- END: previous -->

9 <!-- BEGIN: site -->

10 <!-- BEGIN: active -->{{PARAM.data}page_site}<!-- END: active -->

11 <!-- BEGIN: inactive --><a href="{global.root}{global.scriptname}{{PARAM.data}'

param_site}" onmouseover="SetStatus(’{RES.opage_common_gotopage}’);return(true '

);" onmouseout="SetStatus();return(true);">{{PARAM.data}page_site}<!-- END: '

inactive -->

12 <!-- END: site -->

13 <!-- BEGIN: next --> <a href="{global.root}{global.scriptname}{{PARAM.data}'

param_next}" onmouseover="SetStatus(’{RES.opage_common_next}’);return(true);" '

onmouseout="SetStatus();return(true);">><!-'

- END: next -->

14 <!-- BEGIN: last --> <a href="{global.root}{global.scriptname}{{PARAM.data}'

param_last}" onmouseover="SetStatus(’{RES.opage_common_last}’);return(true);" '

onmouseout="SetStatus();return(true);">>></a'

><!-- END: last -->

15 </div>

If the pager control should be displayed more then once on a page (e.g. on top and at the bottom as in
the example above), the OutputTpl() method can be called with an additional parameter $sSub, which is
appended to the controls name, when parsing the main block. For an example see listing 15 on page 83.

The links created by the pager control contain all the GET and POST parameters provided by the global
object $oApp, with some exceptions:

- All empty parameters are ignored.
- The parameters datetime and timezone are ignored.
- As obvious, the parameter page gets overwritten with the page number, which should be displayed.

oPage provides various pager templates in include/template/, which simplifies the use of the pager control.
One example is shown in listing 17 on the preceding page.

3.16 Administration

3.16.1 CAdmin

oPage’s backend is a custom Web site using the oPage framework. A derived CWebPage class and a
basic.tpl template are stored in the admin/custom/ directory. Besides of scripts like admin/logon.php,
admin/logoff.php and admin/navigation.php the backend’s main code is in admin/custom/index.php and
admin/custom/detail.php. These files create the list and the detail view for the modules.

The illustration figure 19 on the following page shows the schema of the backend and the involved classes.

85

3.16 Administration

page
metatags
content
user

CDb

CModul CContent

index.php
detail.php

CWebpage basic.tpl
content.tpl
detail.tpl

index.tpl
detail.tpl

CNavigation

CForm

CTemplate

CWebpage

CAdmin

include/opage.php
custom/config.php
custom/opage.php

admin/custom/opage.php

CControl CFilter
CSort
CPager

Figure 19: oPage backend schema

3.16.2 List View

The list view (see figure 20) displays a list of records of a module. These records can be filtered by entering
criterias in the filter area. To order the result, the user can click on the appropriate sort buttons. The number
of records which should be displayed can be changed, the default value can be set in the parameter module
under admin_{module name}_rows, admin_rows and rows. If no value is defined, 20 rows are displayed. If
more records are availabled, a pager control is displayed.

Some of the fields displayed can be changed in the list view. When a record has been modified, the box on
the left side of the record is checked automatically. Rows with checked boxes can be stored (or deleted)
with the buttons above the rows. At the same level, there is a button to add a new record. On the right side
of each row, there is a button to open the record in the detail view and a button to delete the current record.
Additional module specific buttons can be displayed as well.

Figure 20: Backend administration form for an article (list view)

86

3 oPage Framework

Listing listing 18 shows the admin/custom/index.php script, which creates the list view for a module.

Listing 18: List View (admin/custom/index.php)

1 <?php

2
3 include_once ’../../include/opage.php’;

4
5 // get parameters

6 if (!isset($sSystemModul) || $sSystemModul === null)

7 $sSystemModul = $oApp->GetParameter(’systemmodul’);

8 if (!isset($sSystemPage) || $sSystemPage === null)

9 $sSystemPage = $oApp->GetParameter(’systempage’);

10 if (!isset($sSystemPath) || $sSystemPath === null)

11 $sSystemPath = $oApp->GetParameter(’systempath’);

12
13 // die if parameters missing (or set default parameters)

14 if ($sSystemModul === null)

15 die(’parameter modul’);

16 if ($sSystemPage === null)

17 die(’parameter page’);

18 if ($sSystemPath === null)

19 die(’parameter path’);

20
21 // create page

22 $oPage = $oFactory->CWebPage($sSystemPage, ’CWebPageX’);

23 $oPage->Init();

24 $oPage->UserCheck($oApp->GetRoot() . ’admin/logon.php?filename=’ . urlencode($oApp->'

GetBackUrl()));

25 $oPage->RightCheck(substr($sSystemPage, 2), ’read’, $oApp->GetRoot() . ’admin/home/index.'

php’);

26 $oPage->Begin();

27
28 // create modul

29 $oModul = $oFactory->Modul($sSystemModul);

30 $oModul->ClearFilters();

31 $oModul->SetView(’’);

32
33 // create admin

34 $oAdmin = $oFactory->Control(’CAdmin’);

35 $oAdmin->SetTemplateParameter($oPage->GetTemplateParameter());

36 $oAdmin->SetModul($oModul);

37 $oAdmin->SetFilter();

38 $oAdmin->SetSort();

39 $oAdmin->SetPager();

40
41 // add fields to admin

42 $oModul->AdminList($oAdmin);

43
44 // run admin

45 $oAdmin->Action();

46
47 // output admin

48 $oPage->Assign(’content’, $oAdmin->Output($sRoot . $sSystemPath . ’index.tpl’));

49
50 $oPage->End();

51

87

3.16 Administration

52 ?>

admin/custom/index.php creates an instance of CWebPage for the basic layout (stored in admin/custom/ba

sic.tpl) of the page. This class provides methods to check, if the current user is logged on and has sufficient
rights for this module. Then the module object and the CAdmin control are created. The module is assigned
to the CAdmin control along with some other controls87 used in the backend.

The CAdmin control is initialized by the module with the AdminList() method. This methods creates a
form field for each module field that has been activated with SetFieldUseAdminList().

The Action() method processes supplied data and updates the database by calling the modules Insert(),
Update() and Delete() methods.

At last, the administration control is merged with the module specific template and the result is inserted into
the page template.

To simplify and unify the development of the backend templates, oPage provides a wide range of template
fragments for the various field types. These files are similar to the fragments described in section 3.14 on
page 80, but are specific to the backend and must not be used by the frontend.

3.16.3 Detail View

While the list view is used to display a number of records, the detail view is used to edit one record.
Figure 21 shows a screenshot of the detail view of a CArticle record.

At the top and at the bottom of the screen there are buttons to save, copy and delete the current record. If
a preview URL has been defined for the module, a button is displayed which opens a copy of the current
record and displays the preview page in a new window.

If the frontend script uses caching, update URLs can be set in the module configuration in the factory. Then
the detail view displays a cache update button, which calls every URL to force a cache update.

Figure 21: Backend administration form for an article (detail view)

87 A custom control can be supplied to override the automatically created default CFilter, CSort or CPage control.

88

3 oPage Framework

3.16.4 Sub Modules (1:n relations)

As described in section 3.8.8 on page 72 modules use other modules as sub modules to implement 1:n
relations. In the backend both for the main module and for it’s sub modules CAdmin controls are created.
The main admin uses a sub admin for each sub module of the main module.

A sub module is defined using the AddSub() method of the main module. The instances of the sub modules
are created automatically by the main module when needed. When a record is deleted in the backend, all
the related records of the sub modules are deleted as well.

For each sub module a CAdmin control is created. These sub admins can again have other sub admins. All
sub admins display their records in the list view node.

Figure 18 on page 74 shows the detail view of a CArticle record, which has multiple paragraphs and each
paragraph having pictures. In the database the table article has a 1:n relation with article_paragraph, which
is 1:n related with article_paragraph_picture.

3.16.5 Relations (m:n relations)

The module CRelation is used to represent a many to many relation. For instance, an article can be assigned
to a number of categories and a category can have numerous articles. In this example, the CRelation module
splits the m:n relation into two 1:n relations and stores the ID values. The module CArticle is used to manage
the articles, CArticleCategory provides the categories. To manage the relations, two virtually derived classes
are defined in the factory, one for each module. CArticleCategoryArticle manages the relation for CArticle
class, while CArticleCategoryArticleCategory manages the relation for the CArticleCategory class.

Relations are added to the module in the factory with AddRelation(). Each relation module is automatically
added by AddRelation() as a sub module with AddSub().

A form control from the type SELECT_SWITCH is used to display the category in the detail view of the
article. Assigned categories are listed in the top box. The available entries can be selected and moved
between the boxes with the buttons on the right side.

When the article is stored, the administration control calls StoreRelation() of the CArticleCategoryArticle
class with the ID of the article and a list of IDs of the assigned categories.

3.16.6 CModule Admin

The base class CModul provides the basic infrastructure to configure the administration control.

The backend creates an instances of CAdmin and one of the module. Then the module’s AdminList() or
Admin() method is called with a reference to the CAdmin instance. All activated fields are added to the
admin form and configured with default settings depending on the field type.

For each m:n relation, an instance of the relation module is created and assigned to the admin instance. Also
a SELECT_SWITCH field is created, where the relation data will be displayed.

Available sub modules are instanced and added to the main module with AddModul(). For each sub module
a new instance of CAdmin is created and initialized by calling the AdminList() method of the sub module,
and assigned to the main admin instance with AddAdmin().

3.16.7 CContent Admin

The administration control can be configured within a module by implementing the methods AdminListProp
erties() and AdminProperties(). To prepare the user interface, the backend calls AdminList() for the list
view and Admin() for the detail view. As described in section 3.16.6, this methods make some basic settings
for each field depending on its type and calls the appropriate properties method.

89

3.16 Administration

Listing 8 on page 60 shows how the administration control of CContent is configured.

In AdminListProperties() the fields title, title_menu and title_navigation are set to read only. If
the parameter title_maxlength or the module specific parameter content_title_maxlength is defined, the
maximum length of the title field is limited to the given number. The title field is set as master field for
title_menu and title_navigation. If one of these fields is empty, the value is copied from the master field.

The derived module can provide the AdminList() and the Admin() methods, which override the base class
methods, to implement a specific behavior.

3.16.8 Import Data, Export Data

oPage offers in the list view of import and export buttons. Both buttons can be activated for a module by
calling SetImport() and SetExport() in the factory class.

For the import, the field, which uniquely identifies a record can be changed from id to another field name
with SetImportId(). On the basis of this field name, new, existing and deletable records are identified.
SetImportInsert() allows Import to add new records. With SetImportUpdate(), existing records get
updated, while SetImportDelete() forces oPage to delete existing records from the database, if they are
not in the imported file. If SetImportDeleteAll() has been called, all existing records are deleted, before
the import starts.

To save fields from being overwritten by update imports, these fields can be set on a leave-me-alone list
with SetImportLeave(). If a column should not be exported, the field name can be put on the exclude-me
list with SetExportLeave().

The import and export format is CSV88, a text file format where values are enclosed in quotes and separated
by a semicolon.

Figure 22: data export

When the export button is clicked (see figure 22), the administration control writes the data of the module
with the modules CsvWrite() method into a temporary file in the temp folder and sends the file to the Web
browser. When everything is finished, the temporary file is deleted. Only those records are exported, which
apply to the current filter criterias, which the user has selected in the list view.
88 http://en.wikipedia.org/wiki/Comma-separated_values

90

http://en.wikipedia.org/wiki/Comma-separated_values

3 oPage Framework

Figure 23: import form

The import procedure (admin/custom/import.php) opens a form, where the user can select a file and set the
import options. When the form is submitted, the uploaded file is processed by the CsvRead() method of the
module.

The import function can also be called directly. For example on an internal server, a script can create a
CSV file with stock item data from a warehouse database. This script then makes a HTTP POST request
with the appropriate parameters. The file is uploaded to the Web server and processed automatically
without user intervention. To export data automatically, a similar function is available in oPage at
admin/custom/export.php.

3.16.9 Preview

Users like to see, how the content looks on the Web site, even before it is saved and available to the public.
This can be done with the preview mode. The preview button gets displayed in the detail window only if the
preview mode has been activated for the module. oPage uses the frontend Web site to display the preview.
Since this preview URL may be different on every Web site and for every module, the preview URL has to
be set for each module in the factory.

To view a preview of a record, oPage creates a copy of the entry and then calls the frontend Web site to
display it. This copy is marked with the preview flag (the field preview contains the value ’y’) and will
not be displayed on the regular Web site. Around the preview, an invisible frameset is loaded. When the
frameset gets closed, it calls the backend URL admin/preview/delete.php to delete the preview record.

Creating the copy for the preview is tricky. The database record needs to be copied, but as well all records
of the sub modules. All the data stored in the file system (like images and other binary objects) have to
be copied. If the edited records contain files to be uploaded, the new data needs to be processed, e.g. the
uploaded files need to be copied to their final destination and images need to be resized.

All this copying is done by the administration control for the main and the sub modules. For processing the
form input and the uploaded files, the form control is used as usual.

When the preview record gets deleted, all the records of the sub modules get deleted as well, along with all
external files belonging to this records.

Listing 19: custom factory.php for preview

1 <?php

2

91

3.16 Administration

3 include_once $sRoot . ’include/factory.php’;

4
5 Class CFactoryX extends CFactory

6 {

7 Function _ModulConfigure(&$oObject, $sClass = null)

8 {

9 global $oApp;

10 global $oSession;

11 global $oCustomer;

12
13 if (is_null($sClass))

14 $sClass = $oObject->GetClass();

15
16 switch($sClass)

17 {

18 case ’CNews’:

19 parent::_ModulConfigure($oObject);

20 $oObject->SetFieldUseAdmin(’preview’);

21 $oObject->SetPreview(’news/detail.php’, ’news’);

22 break;

23
24 default:

25 parent::_ModulConfigure($oObject);

26 break;

27 }

28
29 return($oObject);

30 }

31 }

32
33 ?>

In listing 19 on the preceding page the news module is configured to provide preview support.

In the base class CModul, a filter is set to ignore the preview records. If a preview record ID is provided, the
filter is extended, to allow the display of the desired record. When the preview button is clicked, the URL
news/detail.php is called and the record id of the preview record is provided with the parameter news.

Listing 20: news detail.php

1 <?php

2
3 // include oPage main file

4 include_once ’../include/opage.php’;

5
6 // get parameter value for record id

7 $iId = $oApp->GetParameter(’news’);

8
9 // create new page object

10 $oPage = $oFactory->Webpage(’news’, ’CWebpageX’);

11 $oPage->Init();

12 $oPage->Begin();

13
14 // create the content module

15 $oNews = $oFactory->Modul(’CNews’);

16 $oNews->SetFilter(’id’, $iId);

17 $oNews->QueryData();

18

92

3 oPage Framework

19 // output the content module using template ’detail.tpl’ and assign result to page

20 $oPage->Assign(’content’, $oNews->Output(’detail.tpl’));

21
22 // finish page and send it to the client

23 $oPage->End();

24
25 ?>

As shown in listing 20 on the preceding page, no special precautions have to be taken in the output script to
support preview mode, since everything is done in the module base class.

Listing 21: preview part in modul.php

1 <?php

2
3 Class CModul

4 {

5 Function CModul($sName)

6 {

7 global $oApp;

8
9 // If no name is provided, use default name

10 if (is_null($sName))

11 $sName = $this->GetDefault();

12
13 $this->SetFieldUse(’preview’, false);

14 $this->SetPreviewId($oApp->GetParameter($sName . ’_preview’));

15 $this->SetFilter(’preview’, array(’n’, ’’, null));

16 }

17
18 Function Admin(&$oAdmin)

19 {

20 $oAdmin->SetButtonPreview(false);

21 if ($this->GetFieldUse(’preview’))

22 {

23 $this->SetFilter(’preview’, array(’n’, ’’, null));

24
25 if ($this->GetFieldUseAdmin(’preview’))

26 {

27 $oAdmin->SetButtonPreview(true);

28 if (IsNull($oAdmin->GetPreviewUrl()))

29 $oAdmin->SetPreviewUrl($this->GetPreviewUrl());

30 }

31 }

32 }

33
34 /** Extends the provided sql where string with the preview filter, so that the preview '

record gets always displayed.

35 */

36 Function GetPreviewFilter($sFilter = ’’)

37 {

38 if (!$this->GetFieldUse(’preview’))

39 return($sFilter);

40
41 $sId = $this->GetPreviewId();

42 if (IsNull($sId))

43 return($sFilter);

93

3.16 Administration

44
45 if ($sFilter != ’’)

46 $sFilter = ’(’ . $sFilter . ’) or ’;

47 $sFilter .= ’(’ . $this->GetField(’preview’) . "=’y’ and " . $this->GetField(’id’) .'

"=$sId)";

48
49 return($sFilter);

50 }

51 }

52
53 ?>

3.16.10 Privileges

In this section, user and rights management for the backend is discussed.

By default, rights management is provided in a very simple manner. The module CUser manages backend
user accounts, which all have administration privileges.

With every record edited, the name of the user is stored along with the current date. Also the last modified
date and username is updated with every change.

If differentiated access rights are needed, per user rights management can be activated for each account
by calling $oApp->SetFeature(’user’, ’rights’, 1) in custom/opage.php. For each account, multiple
rights can be assigned. These records are managed by the modules CRight, CUserRight and CRightUser.
The last two modules manage the m:n relation between CUser and CRight and are virtually derived classed
from CRelation module (see paragraph 3.4 on page 50 as well as include/factory.php). These classes are
needed to provided separate views for the same table: CUserRight provides the database field user_id as
internal field id, CRightUser uses right_id as internal field id. In the administration form control, this
classes are used to fill two listboxes, one with the selected values, the other with the available non-selected
items. In the users detail dialog, rights can be assigned to users, in the detail window for the rights, users
can be assigned to rights.

Figure 24: user details

Rights are currently managed per module, record level access lists are not available by now.

Users can also be assigned to groups, and groups can have rights. Here the module classes CUser, CRight,

94

3 oPage Framework

CGroup and the relation classes CUserGroup, CGroupUser, CGroupRight and CRightGroup are used. This
mode is activated with $oApp->SetFeature(’user’, ’right’, 2).

Figure 25: group details

While users and groups can be freely created, names of rights have to follow some rules. There are different
levels of rights:

admin
This right allows everything and includes all other rights.

admin#import
With this right, adding new records is allowed (this right includes the add, change and delete right).

admin#add
With this right, adding new records is allowed (this right implicates the read right).

admin#change
This right allows to change existing records and includes the read right.

admin#delete
To delete existing records, this right is needed (and includes also the read right).

admin#export
With this right, the user can call the export function.

admin#read
With this right, all records are allowed to be read.

These rights are global and apply to every module. Module specific rights can be specified by prepending
the name of the right with the name of the module.

modulname#admin
modulname#import
modulname#add
modulname#change
modulname#delete
modulname#export
modulname#read

Using the rights module

When a user logs into the backend with the Logon() method of CUser, the assigned rights are loaded and
stored in the session.

95

3.17 Advanced topics

Figure 26: right details

To assure, that the user has sufficient rights, the method Right(sModul,sRight) is used. This method is
called with the name of the module and the desired operation (admin, export, add, change, delete, import
or read). The function checks, if the user has the privileges or a right, which includes the desired one, and
returns true or false.

In admin/navigation.php, the backend navigation control is filled. If a user has no right to at least read a
modules records, the menu item is not displayed at all. If an entry is a sub item of another menu item, e.g.
CShopCategory is usually a sub entry of CShop, the user has to have at least the read right for CShop to
access CShopCategory. If the user has no right for the parent entry, all sub menu items are hidden.

3.17 Advanced topics

3.17.1 Setup

Installation of oPage on a Web server is easy. All the files have to be transfered to the document directory or
to a sub directory of it. Then the default custom/config.php has to be updated with the appropriate settings.
The database connection to an existing database has to be set and if oPage is installed in a sub directory, the
root path needs to be adjusted. Also the install setting needs to be changed to true to enable the install
script.

The install script can then be called at admin/install.php and creates all necessary database tables and
inserts some default records. The install script accepts the parameter install with one of the following
values to invoke just a part of the installation procedure: db, which just checks the database connection,
session to create the session table, modul to process the module specific installation, parameter to insert
necessary default parameter values, and user to create the default user and assign administration privileges.

Now the backend at admin/index.php can be accessed with username and password admin. The first action
should be changing the administration password in the user module. Also the default email address should
be set in the parameter module.

To avoid other people running the install script, the script should be disabled in custom/config.php.

The setup script at admin/setup.php works similar, but requires a previous login to the backend, and can also
be enabled and disabled in the oPage configuration. Setup only processes the module part of the installation
procedure and creates missing tables and fields (and deletes deactivated fields) for each module. It also
automatically adds backend navigation page entries for this modules. Additional modules can be added in

96

3 oPage Framework

the module CModule. When a modules configuration was changed, setup has to be run to apply the changes
to the database. See section 3.17.2 for details how to configure a module.

The install and the setup script can be called with the parameter modul to run the process just for one module.

With the test script at admin/test.php, some checks are run, to evaluate some basic Web site functions like
sending an email or resizing an image. The test script can only be started, when setup is enabled.

The initial installation and the setup can be extended with modules, backend and frontend page and
navigation entries in custom/admin/setup/modul.php and custom/admin/setup/page.php. Have a look at
the enclosed examples listing 22 and listing 23.

Listing 22: custom/admin/setup/modul.php

1 <?php

2
3 // Modules

4 $aModul[] = ’CNews’;

5 $aModul[] = ’CLinks’;

6
7 // Tools

8 $aTools[] = ’CMetatags’;

9 $aTools[] = ’CPageNavigation’;

10
11 ?>

Listing 23: custom/admin/setup/page.php

1 <?php

2
3 // create content page entries

4 SetupPageAdd($sContent, $aPageContent, ’home’, ’index.php’, null, ’Home’);

5 SetupPageAdd($sContent, $aPageContent, ’news’, ’news/index.php’, null, ’News’);

6 SetupPageAdd($sContent, $aPageContent, ’links’, ’links/index.php’, null, ’Links’);

7
8 // add all content page entries to the navigation menu

9 $oObject = $oFactory->Modul(’CPageNavigation’);

10 SetupPageMenu($sContent, $oObject, $aPageContent);

11
12 ?>

The base class CModul provides methods to setup a module, which are used by the installation scripts.
The Setup() method creates a list of all active fields (including multiple fields for each language where
required). Then either the TableCreate() or the TableAlter() method of the database access layer is called.
These methods create SQL statements and executes them, to create and change the table and create indexes.

By overriding the SetupData() method, a module can add some default data, when oPage is installed. The
base class method expects an array of database rows containing key value pairs.

3.17.2 Customization

One of the design goals of oPage was to make it highly customizable. The design is defined in the basic
and in the content templates. In this section, the customization of the framework is described.

The basic configuration of oPage has been discussed in section 3.17.1 on the facing page. Other settings,
like the size of images, can be changed in the parameter module within the backend.

Files in the directories admin/, download/, include/, popup/ and redirect/ contain the oPage system and
must not be changed. There are other places to add custom behavior.

97

3.17 Advanced topics

opage.php

To extend the system initialization (include/opage.php) a custom version can be created in custom/opage

.php. In listing 24 first it is checked, if oPage is not in backend mode. For all frontend pages, a global session
object is created, which is used to store logon information for the CCustomer module. The LogonAuto()

method looks for username and password, initializes the customer module and stores the information in the
session object. At last, the modus of the counter module, which has been created in include/opage.php is
changed to the modus set in the parameter module.

Listing 24: custom/opage.php

1 <?php

2
3 if (!$oApp->GetAdmin())

4 {

5 // Create session object

6 $oSession = $oFactory->Session();

7
8 // Create customer modul

9 $oCustomer = $oFactory->Modul(’CCustomer’);

10 $oCustomer->LogonAuto();

11
12 // Configure global counter modul

13 $oCounter->SetMode($oParameter->GetValue(’counter_mode’, ’’));

14 }

15
16 ?>

webpage.php

A derived class of CWebpage can be stored in custom/webpage.php. This class is used to provide the project
specific code, which is common for each page. As shown in figure 13 on page 36, a Web page consists of
common parts like navigational links, or logos, which are on every page of the Web site, and the content,
which changes from page to page. The layout for this common parts is in custom/basic.tpl while the
according code is in custom/webpage.php.

The navigation controls are created and filled with data. Also metatags are queried and assigned to the page
template.

listing 25 shows an example custom/webpage.php. In the constructor, the parent constructor is called and the
default page template is set. In the Init() method the access counter for the current page is increased. To
get the page specific metatags (or the default), an instance of the CMetatags module is created and a filter
is set for the current page. Then the result set is limited to one record, the data is queried and merged with
the template. Also the back control is created and joined with the template.

The navigation control is created and filled with two example page entries. Navigation entries could also
be inserted with the FillNavigation() method of a module like CCategory. For each navigation control
a CMenu module can be used to manage the menu tree in the backend. In this example, the entries are
provided by the module CPageNavigation (see also listing 26 on page 100).

After all entries have been added, the current page is set as active. The navigation control is merged later
with the template (in the End() method), to allow a script to insert additional entries.

Listing 25: custom/webpage.php

1 <?php

2
3 include_once $sRoot . ’include/webpage.php’;

4
5 Class CWebpageX extends CWebpageBasis

98

3 oPage Framework

6 {

7 var $oNavigation;

8
9 Function CWebpageX()

10 {

11 parent::CWebpage();

12 $this->SetTemplate(’custom/basic.tpl’);

13 }

14
15 Function Init()

16 {

17 global $oApp;

18 global $oCounter;

19
20 parent::Init();

21
22 // Increase counter for this page

23 $oCounter->Increase(’page’, $oApp->GetScriptName(), $this->oPage->Get(’'

title_display’));

24 }

25
26 Function Begin()

27 {

28 global $oFactory;

29
30 parent::Begin();

31
32 // Create and use the metatags module

33 $oMetatags = $oFactory->Modul(’CMetatags’);

34 $oMetatags->SetFilter(’name’, $this->oPage->Get(’name’));

35 $oMetatags->SetLimit(1);

36 $oMetatags->QueryData();

37 $oMetatags->OutputTpl($this->oTpl);

38 unset($oMetatags);

39
40 // Create and output back control

41 $oBack = $oFactory->Control(’CBack’);

42 $oBack->OutputTpl($this->oTpl);

43 unset($oBack);

44
45 // Create navigation control

46 $this->oNavigation = $oFactory->Control(’CNavigation’);

47 $this->AddNavigation($this->oNavigation, ’home’);

48 $this->AddNavigation($this->oNavigation, ’news’);

49
50 // Insert navigation entries from database

51 $oPageNavigation = $oFactory->Modul(’CPageNavigation’);

52 $oPageModule->QueryData();

53 foreach($oPageModule->GetResult() as $aRow)

54 $this->AddNavigation($this->oNavigation, $aRow[’name’]);

55
56 // Set current page active

57 $this->oNavigation->SetActive($this->oPage->Get(’name’));

58 }

59
60 Function End()

61 {

99

3.17 Advanced topics

62 // Output navigation control

63 $this->oNavigation->OutputTpl($this->oTpl);

64 return(parent::End());

65 }

66 }

67
68 ?>

factory.php

The initialization script include/opage.php looks for a project specific factory class, which extends the
standard factory. The factory class is used to create and customize modules, to create virtually derived
modules, as well as to include additional project specific classes.

listing 26 shows an example custom factory class. A real derived class (CContentHomepage) and three
virtually derived classes (CContentService, CPageNavigation and CServiceCategory).

The module CContentHomepage is described in listing 27 on page 102.

For each derived class, a new default name for the module is set, which overrules the default name of
the parent class. The real class name is set, the class file is included, and the parent method _Modul() is
called, where the instance is created. This parent method calls _ModuleConfigure(), where the object can
be customized. A classname parameter can be provided to configure a module with different settings.

Both the CContentHomepage and the CContentService modules are derived from CContent. Settings,
which apply to all CContent classes, are combined.

By enabling the category_name field, the CContentService module is used in combination with a category
module. By default, the module would use the CContentServiceCategory module. By calling SetClass

Group(’CService’), the CContentService module uses CServiceCategory instead.

Listing 26: custom/factory.php

1 <?php

2
3 include_once $sRoot . ’include/factory.php’;

4
5 Class CFactoryX extends CFactory

6 {

7 Function _Modul($sClass, $sName = Null, $fInclude = Null)

8 {

9 global $oApp;

10 global $sRoot;

11
12 switch($sClass)

13 {

14 case ’CContentHomepage’:

15 if (is_null($sName))

16 $sName = ’homepage’;

17 $sClass = ’CContentX’;

18 $sInclude = ’custom/modul/’;

19 break;

20
21 case ’CContentService’:

22 if (is_null($sName))

23 $sName = ’service’;

24 $sClass = ’CContent’;

25 break;

26

100

3 oPage Framework

27 case ’CPageNavigation’:

28 if (is_null($sName))

29 $sName = ’page_navigation’;

30 $sClass = ’CMenu’;

31 break;

32
33 case ’CServiceCategory’:

34 if (is_null($sName))

35 $sName = ’servicecategory’;

36 $sClass = ’CCategory’;

37 break;

38 }

39
40 if (isset($sInclude))

41 {

42 include_once $sRoot . $sInclude . strtolower(substr($sClass, 1, -1)) . ’.php'

’;

43 $fInclude = false;

44 }

45
46 $oObject = parent::_Modul($sClass, $sName, $fInclude);

47
48 return($oObject);

49 }

50
51 Function _ModulConfigure(&$oObject, $sClass = null)

52 {

53 if (is_null($sClass))

54 $sClass = $oObject->GetClass();

55
56 switch($sClass)

57 {

58 case ’CContent’:

59 parent::_ModulConfigure($oObject);

60 $oObject->SetFieldUseAdminList(’abstract’, true);

61 $oObject->SetFieldUse(’date’, false);

62 $oObject->SetFieldUse(’title’, false);

63 break;

64
65 case ’CContentHomepage’:

66 $this->_ModulConfigure($oObject, ’CContent’);

67 parent::_ModulConfigure($oObject);

68 break;

69
70 case ’CContentService’:

71 $this->_ModulConfigure($oObject, ’CContent’);

72 parent::_ModulConfigure($oObject);

73 $oObject->SetClassGroup(’CService’);

74 $oObject->SetFieldUseAdminList(’category_name’, true);

75 break;

76
77 case ’CPageNavigation’:

78 parent::_ModulConfigure($oObject);

79 $oObject->SetFieldUse(’parent_name’, false);

80 break;

81
82 case ’CServiceCategory’:

101

3.17 Advanced topics

83 parent::_ModulConfigure($oObject);

84 $oObject->SetFieldUseAdminList(’name’);

85 $oObject->SetFieldUseAdminList(’image_small’);

86 break;

87
88 default:

89 parent::_ModulConfigure($oObject);

90 break;

91 }

92 }

93 }

94
95 ?>

module/contenthomepage.php

A project specific module is usually stored in custom/modul (have a look at the include path $sInclude in
listing 26 on page 100). This can be a new or a derived class from an existing module.

The example in listing 27 shows how the CContent module is extended with the additional field author.
If the additional field should be displayed in the backend, the administration templates index.tpl and
detail.tpl have to be adapted. The original files have to be copied from admin/content/ to custom/ad

min/contenthomepage/ and can be edited there. The templates provided with oPage must not be changed.
The path to the customized templates has to be set, e.g. in the constructor or in the factory.

Listing 27: custom/modul/contenthomepage.php

1 <?php

2
3 include_once $sRoot . ’include/modul/content.php’;

4
5 Class CContentHomepageX extends CContent

6 {

7 Function CContentHomepageX($sName = Null)

8 {

9 if (is_null($sName))

10 $sName = ’content_homepage’;

11
12 // Initialize base class

13 parent::CContent($sName);

14
15 // Set path to admin templates index.tpl and detail.tpl: custom/admin/contenhomepage'

/

16 $this->SetAdminPath(’custom/admin/’ . substr(get_class($this), 1, -1) . ’/’);

17 }

18
19 Function SetFields()

20 {

21 parent::SetFields();

22 $this->SetField(’author’, Null, true);

23 }

24
25 Function AdminListProperties(&$oAdmin, $sName)

26 {

27 parent::AdminListProperties($oAdmin, $sName);

28 switch($sName)

29 {

30 case ’author’:

102

3 oPage Framework

31 $oAdmin->SetWidth($sName, 10);

32 break;

33 }

34 }

35
36 Function AdminProperties(&$oAdmin, $sName)

37 {

38 parent::AdminProperties($oAdmin, $sName);

39 switch($sName)

40 {

41 case ’author’:

42 $oAdmin->SetWidth($sName, 130);

43 break;

44 }

45 }

46 }

47
48 ?>

hook.php

The initilization script include/opage.php creates a global hook object. If a custom hooking class CHookX
is available at custom/hook.php, the file is included by the factory.

oPage throws events on various occasions. For each event, the Execute() method of the hook object is called.
The provided example listing 28 is part of an online shop, where customers earn bonus points depending on
the amount of their order.

Each customer has an account (CustomerPoints) where the points are accounted. The shopping script
commit_order.php creates a new record in COrder and calls the hook object with the module’s name shop_

order and the action name ordered. If the customer has encashed some points or earned new points, the
Execute() method of the custom CHook class inserts the according entries into the points account.

In a later step, the order_commit.php script sends a confirmation email to the customer and a notification to
the order department. When the emails are prepared, the mail action is executed. The custom hook class
creates an instance of CCustomerPoints, sets the filter to the current customer and appends the module to
the COrder instance. When the order is merged with the email layout, the points entries are queried and
merged with the template.

Listing 28: custom/custom_hook.php

1 <?php

2
3 include_once $sRoot . ’include/hook.php’;

4
5 Class CHookX extends CHook

6 {

7 Function Execute($sName, $sAction, $oObject)

8 {

9 global $oFactory;

10 global $oApp;

11
12 $sHook = $sName . ’#’ . $sAction;

13
14 switch($sHook)

15 {

16 case ’shop_order#ordered’:

17 parent::Execute($sName, $sAction, $oObject);

18 $oOrder = &$oObject;

103

3.17 Advanced topics

19
20 if ($oOrder->Get(’points’) > 0 || $oOrder->Get(’points_encashed’) > 0)

21 {

22 $oCustomerPoints = $oFactory->Modul(’CCustomerPoints’);

23
24 // Get and format order data

25 $aData = $oOrder->GetRow();

26 $oOrder->PrepareRow($aData);

27
28 // Some points encashed?

29 if ($oOrder->Get(’points_encashed’) > 0)

30 {

31 $aValues = array();

32 $aValues[’customer_number’] = $oOrder->Get(’customer_number’);

33 $aValues[’name’] = ’order#’ . $oOrder->Get(’order_number’) . ’'

_encashed’;

34 $aValues[’points’] = $oOrder->Get(’points_encashed’) * -1;

35 $oCustomerPoints->AddActionWithValues($aValues);

36 }

37
38 // Some new points earned?

39 if ($oOrder->Get(’points’) > 0)

40 {

41 $aValues = array();

42 $aValues[’customer_number’] = $oOrder->Get(’customer_number’);

43 $aValues[’name’] = ’order#’ . $oOrder->Get(’order_number’);

44 $aValues[’points’] = $oOrder->Get(’points’);

45 $oCustomerPoints->AddActionWithValues($aValues);

46 }

47 }

48 break;

49
50 case ’shop_order#mail’:

51 parent::Execute($sName, $sAction, $oObject);

52
53 $oMail = &$oObject;

54 $oOrder = &$oMail->GetModul();

55
56 $oCustomerPoints = $oFactory->Modul(’CCustomerPoints’);

57 $oCustomerPoints->SetFilter(’customer_number’, $oOrder->Get(’'

customer_number’));

58
59 // Add the Points module as a submodule of the customer module

60 $oOrder->AddModul($oCustomerPoints, null, null, $oCustomerPoints->GetName()'

);

61 break;

62
63 default:

64 parent::Execute($sName, $sAction, $oObject);

65 break;

66 }

67 }

68 }

104

3 oPage Framework

3.17.3 Multilanguage

In this section, multilanguage support and internationalisation is described.

The available languages and the default language are set in custom/config.php. For each configuration the
language for the content (frontend) and the administration interface (backend) can be set (see listing 9 on
page 64). For each language, the long name, a short name and a postfix have to be set.

Each module field has a marker, if it is a multilanguage field. For each language, a field is created
in the database table. The name of the field is extended with a language specific postfix as defined in
custom/config.php.

The global application object provides methods to query the current active language. In the backend,
the application object automatically uses the administration language settings. GetLanguage() returns the
ID of the current active language, GetLanguageShort() returns the short name for a language ID, while
GetLanguageText() provides the long name. GetLanguagePostfix() returns the field name extension for
the active language, which is used by modules to identify the database columns for the current language.
All this functions accept a parameter $fContent. If this parameter is set to true (by default it is false),
$oApp is forced to use the language settings for the frontend. This is necessary in the backend to provide
multilanguage support independently of the languages used in the administration interface.

The active languages for the frontend and the backend are stored in a cookie. To change the language,
SetLanguage() can be called with the ID (as defined in custom/config.php) of the language. To store the
settings in the cookie, WriteLanguage() can be called. The ID for a language can be queried with the long
name and GetLanguageID() or with the short name and GetLanguageShortID(). $oApp automatically checks,
if the GET or POST parameter language is available. If it has a valid value (either language long name or
short name). The new active language is stored in the cookie. When a user logs on to the backend, the users
language settings are also used.

System messages are defined in include/resource.php and are used reflecting the users to inform the
backend user, when records where successfully stored or if an error occured.

Also numbers and date format functions make use of the language settings. The factory object initializes
instances of CNumber and CDate with the current language. Currently resource strings, number and date
formats are availabled in German and English. Additional language settings can be added.

To provide static content in different languages, separate HTML files have to be created for each language.
When loading such a file, the correct filename can be created using $oApp->GetLanguage Postfix(). For an
example see listing 1 on page 37.

For templates, this method also can be used. But it is sometimes more convenient to put all the text content
into a resource file, such as custom/resource/de.res) and heaving just one template. The template engine
uses the short language text to generate the filenames of the resource files. Have a look at section 3.5.8 on
page 59.

3.17.4 Caching

There are different methods how Web pages are generated by content management systems. Some systems
start the output right after a page has changed and store the result (static approach). Others (like oPage)
create the page each time it is requested. This dynamic approach provides more flexibility, especially when
information is used in the page creation process, that can change with every request like the name of the
current user or the current date and time.

At the first request the Web page is created and stored in the cache. For the following requests, it is checked,
if the content in the cache is still valid or has to be recreated. In this mode (update before display), the first
user and users requesting an outdated page have to wait while the content is created. If possible, the page
can be precreated when the content is stored. When the content is invalid, but available in the cache, then
the outdated page can be sent to the client, and the update process is started afterwards (update after display
mode). This reduces the response time of the Web site.

105

3.17 Advanced topics

To cache content the CCache class is available. This class provides the infrastructure to store, validate and
retrieve the content. A new instance of CCache can be created with the factory method Cache().

The CWebPage uses CCache to store the generated pages. To cache content parts, the cache can be used
directly.

Listing 29: parts/news.php with content caching

1 <?php

2
3 defined(’oPage’) or die();

4
5 // Create and initialize the content cache

6 $oCache = $oFactory->Cache();

7 $oCache->SetScriptname(’custom/parts/news.php’);

8 $oCache->Init();

9
10 // Output main teasers

11 if ($oCache->GetCreate())

12 {

13 // Create content template

14 $oTemplate = $oFactory->Template($sRoot . ’custom/parts/news_content.tpl’);

15
16 // Create the module

17 $oTeaser = $oFactory->Modul(’CTeaserNews’);

18 $oTeaser->SetFilter(’section_id’, $oApp->GetParameter(’section’));

19 $oTeaser->QueryData();

20
21 // Output records

22 $oTeaser->OutputTpl($oTemplate);

23
24 // Get the content from the template

25 $oTemplate->Parse();

26 $sContent = $oTemplate->Text();

27
28 // Store the content in the cache

29 $oCache->SetContent($sContent);

30 $oCache->Write();

31 }

32 else

33 // Get the content from the cache

34 $sContent = $oCache->GetContent();

35
36 // Create main template

37 $oTemplate = $oFactory->Template($sRoot . ’custom/parts/news.tpl’);

38
39 // Assign main teaser content

40 $oTemplate->Assign(’content’, $sContent);

41
42 // Output right teasers

43 include $sRoot . ’custom/fragments/teaserside.php’;

44
45 // Set the content to the page

46 $oTemplate->Parse();

47 $oPage->Assign(’content’, $oTemplate->Text());

48
49 ?>

106

3 oPage Framework

The provided example (listing 29 on the preceding page) creates a part of a page. The result of the module
CTeaserNews is stored in the cache while the rest of the page is created on every request.

3.17.5 Search

The search method accepts a search string which can contain wild cards like * or %. The provided string is
prepared with StringDBFilter() from include/tools.php where all * are replaced by %. Then an array of
filters is created with every used TEXT or TEXTBOX field.

If any filter has been assigned, the filter array is assigned to the module and the QueryData() is called. If no
text fields are used, the result set is cleared.

Internally the filter array is converted into sql WHERE parts which are combined by the OR operator and use
the LIKE compare operator.

Listing 30: modul.php search method

1 /** Method for fulltext search in modules

2 Search sets/clears $this->aResult

3 @param search string

4 @return void

5 */

6 Function Search($sSearch)

7 {

8 // prepare search statement, $sCompare result is not used.

9 $sSearch = StringDBFilter($sSearch, $sCompare);

10
11 $aFilter = array();

12 foreach($this->GetFieldList() as $sName)

13 if ($this->GetFieldUse($sName))

14 switch($this->GetFieldType($sName))

15 {

16 case ’TEXT’:

17 case ’TEXTBOX’:

18 $aFilter[] = array(’field’ => $sName, ’value’ => $sSearch);

19 break;

20 }

21
22 if (count($aFilter) > 0)

23 {

24 $this->SetFilter(’id’, $aFilter, ’like’);

25 $this->QueryData();

26 }

27 else

28 $this->ClearResult();

29 }

3.18 Summary

In this chapter, the technical description of the oPage framework has been provided. oPage consists of the
framework core, a reusable backend and a highly customizable frontend. The core and the backend program
files can be shared between different Web sites.

The content is stored in database tables. oPage provides class files (modules) to read, insert, update and
delete records from these tables. CModul is the base class for these classes and provides the necessary
infrastructure. It is also used as a report generator to query, filter, sort and page records and merge the result
with the template engine. A hierarchy of modules can be used to represent database relations.

107

3.18 Summary

The template engine loads a template from a text file, includes template fragments, replaces resource strings
and stores the generated structure in its cache. The template is divided into smaller parts (blocks), which
can be parsed individually. These blocks contain placeholders and instructions how to format the provided
values. Blocks on the same level can be logically combined by and and or operators. The template engine in
combination with the module class is a versatile report generator, which can create text output like HTML,
XML, plain text, CSV, RTF, LATEX and alike.

A controller script creates the Web page. It includes the frameworks main file include/opage.php, which
initializes the project environment. Then a customized CWebpage class is instanced, which loads the Web
site layout and inserts common elements like navigation controls. Modules are instanced as desired and
the output is assigned to the Web page object. This object puts all together and sends to result to the Web
browser.

All objects in oPage are created by the factory. A project specific derived factory class can be automatically
instanced by the oPage main include file, otherwise the default factory is used. The factory is a central place,
where objects can be configured, before they get used. This pattern allows to create and use derived classes,
without modifying existing source code.

oPage provides a versatile form engine, which processes plain and multiline text, date, number, currency,
binary upload and other input types. oPage offers template fragments in the template library to build
plain and tabular forms. The base class CModul provides a number of methods to simplify acquiring
and processing of user input. Methods are provided to initialize, validate and process forms to add, update
and delete records. According functions exist, which send appropriate emails for these actions using the
processed data.

The adminstration control processes the backend forms. Two kinds of forms can be used: The list view,
where multiple records can be edited at once, and the detail view, where just one record can be modified.
The control retrieves field names and types from the assigned content module and initilizes the form engine.
To reflect relations, a hierarchy of admin controls is created, each having an associated module. Before
a record is finally stored, a preview of the resulting Web page can be created using a copy of the record.
Records can be exported to and imported from a CSV file.

oPage can be customized and extended as needed. Existing objects can be configured in the factory.
Additional and modified classes can be included. Extended actions can be started by catching events in
a custom hook class. Additional languages can be activated as needed. To increase the performance, the
generated pages or page fragments can be cached.

The oPage framework is a powerful base for building Web based content management systems.

108

4 Evaluation

In this chapter the goals of the oPage framework are matched against what has been accomplished. In
section 2.6 on page 32 the requirements were listed.

4.1 Operating system

Web sites using oPage can run on every platform, where PHP and MySQL are available: Microsoft
Windows, Linux, Mac OS X, Solaris, FreeBSD and others. ImageMagick is available for all mentioned
operating systems. On platforms where ImageMagick is not available, the GD library of PHP is used
instead.

Since all components are licensed as open source, it is (theoretically) possible to build binaries for
unsupported operating systems.

oPage has been successfully installed on various Microsoft Windows and Linux systems running Microsoft
Internet Information Server 6, Apache 1.3 and 2.0 and 2.2 and MySQL 4 and 5. Both PHP 4.x and PHP 5.x
have been tested in CGI and fast CGI mode, and running as ISAPI and as Apache module. The differences
of the platforms are hidden in the class CApp (see section 3.7 on page 63).

4.2 Installation

In section 3.17.1 on page 96 the steps for setting up the oPage framework have been described. This
is easy enough for experienced users, but beginners may have troubles setting the right options in
custom/config.php. A setup wizard and a tool to change the settings in the backend would make things
easier and should be included in the future.

4.3 Web compatibility

The quality of Web pages depend heavily on the provided templates, but also on the content. The templates
of the backend are standardized and used in every project. While creating these files, the resulting pages
have been checked by the HTML Validator plugin of Firefox 2.

Frontend templates are created separately for each project. Although a set of template fragments is provided
by the framework, the quality of the resulting Web page depends on the experience and accuracy of the
Web developer. Authors may enter content containing HTML code, either directly or supported by the
WYSIWYG editor. In both cases, typos and syntax errors may occur, which result in non compliant Web
pages. Current browsers are fault-tolerant and manage to display the Web page even if it has errors. But
less tolerant systems like screen readers or news readers, which often require valid XML code, may fail.

oPage provides a stable base of backend templates and template fragments for the frontend. Web sites using
the framework have been successfully tested with a wide range of Web browsers like Microsoft Internet
Explorer (4, 5, 6 and 7), Firefox (1 and 2), Opera (8 and 9) and Safari.

4.4 Search engine optimization

oPage offers a number of ways to optimize a Web site for search engines. There is a module to manage
metatags for a Web site. URLs with parameters can be masqueraded as paths by changing the query and
the parameter separator from ? and & to /. Additional parameters like the title of the target page can be
appended to an URL.

Further optimizations can be implemented by using a frontend controller and the Apache module mod_-
rewrite. TYPO3 comes with a more strict frontend and provides this feature. This has not been implemented
in oPage so far since it would make oPage depend on Apache.

109

4.7 Security

4.5 User interface

The user interface design in the backend is the same for all oPage projects. Template fragments provide
the basic elements and are combined with page templates providing the common layout. For every button
both the ALT and the TITLE attribute are set to explain their purpose. URLs in text blocks are identified
automatically and converted into hyperlinks. The backend currently supports only German, but can be
provided in different languages by creating the appropriate language resource files. For each text area, a
WYSIWYG HTML editor can be activated.

Currently HTML input is not validated enough. To guarantee a consistent layout, which can not be broken,
the system would have to detect errors in the content. It could be adequate to limit allowed tags and to
check the content for XHTML validity.

4.6 User management

Management of backend user privileges is provided in three different modes. The default and simplest mode
supports only one kind of users, which all have administration rights. In the second mode, global and per
module rights can be assigned to users. Groups can be defined in the third variant, where users and rights
are assigned to the defined groups.

For most oPage projects the simple mode has been sufficient. In a couple of projects e.g. http://www.

demmer.at and http://www.motorline.cc, the variant with user, right and group management has been used.
The same classes can also be used in the frontend.

Currently, rights are always assigned for a whole module. Record based access rights are currently not
available, but would be a nice feature. A record should only be editable by the current owner. But this
requires to change all backend form templates. One approach could be the use of AJAX in the list view. All
the records are read-only by default. When the user tries to modify the record or wants to open the detail
view, the browser makes a JavaScript call to check, if the user is allowed to do this operation. When the
changes are submitted, the server has to check again, if the modifications are allowed.

4.7 Security

Web sites and Web applications have to be secure, only allowed operations should be possible and the
content has to be secured against manipulation. Security concerns have to be taken into account on every
level of the system stack, starting at the operating system up to the Web site’s user frontend.

The operating system is usually managed by a system administrator, who is responsible to install and secure
the system and its services, like the Web server and the database management system. Patches and updates
need to be installed, permissions need to be set to block external intruders and to separate multiple Web
sites from each other.

The rights in the file system have to be set to the minimum needed. On Web sites using oPage, the Web
server only needs write permissions to the cache/, static/ and the temp/ directory. For any other files and
directories, only read access is needed.

None of the security options can be changed within PHP scripts, the security functions of PHP should be
turned on in php.ini or in the configuration of the Web server, where separate settings can be applied for
each virtual server. oPage checks for PHP’s safe_mode setting and acts appropriately.

For a long time (until PHP version 4.2.0), HTTP parameters have been converted into global variables by
default. Using undeclared and uninitialized variables provided a nice way for intruders to manipulate a
Web site. The PHP setting register_globals is usually off in current PHP versions, but it is always good
to initialize variables with a default value. When oPage is used on a development system (see section 3.7
on page 63), the error reporting is turned on fully. When an uninitialized variable is detected, a warning is
reported. If a critical error occurs, processing is stopped and the call stack is displayed.

110

http://www.demmer.at
http://www.demmer.at
http://www.motorline.cc

4 Evaluation

Other security threats of Web applications are SQL-Injections89 and cross-site scripting90. Most of the
issues are caused by using unchecked parameter values within scripts of the Web site. In the provided guest
book example (see listing 12 on page 80), the data submitted by the form is processed using the modules
from action method, which returns an array of fields, that are used by the module, and values, where all
HTML tags are stripped. All values, which are used in a database query, are automatically enclosed by
single quotes and quotes are escaped with a slash.

4.8 Software architecture

oPage makes use of object oriented design patterns. The factory class is responsible for instancing the
oPage classes and including the necessary source files. Foreign classes are integrated with a facade pattern.
The system abstraction layer is instanced using the singleton pattern.

For each type of structured content, a module class is used, which is derived from a base class. It operates
as a report generator and provides operations to create, retrieve, update and delete records. In a controller
script, the various objects are tied together. The content is queried with the module and merged with a
template through a template engine.

The database access is done with a database abstraction class (CDb). The system environment is also
abstracted (CApp). Besides of the controller scripts, where procedural code is used, all other scripts use
object oriented code.

Web sites using oPage are divided into the oPage core, the backend and the frontend. The core and
the backend files can be shared between different projects, only the frontend is Web site specific. All
customizations are usually done in the custom/ directory.

oPage provides a number of template fragments with common elements, which can be used in the frontend
to speed up development.

4.9 Application programming interface

oPage is used in a number of projects91 of different complexity. Usually a Web designer creates a screen
design, which a programmer takes and provides the configured and customized Web site using the oPage
framework. Then a HTML developer modifies the default template files as needed, to meet the screen
designs.

oPage can be customized at many places. The frontend layout is defined in a basic page template and in the
module specific content templates. Modules can be configured in the custom factory. Additional project
specific modules can be derived from standard modules or created from scratch. The project specific hook
class can be used to perform additional actions when certain events occur.

oPage is designed to be flexible and adaptable for different needs. The framework has been extended and
improved a lot since its first use in a project, nearly with every project new features where implemented, but
still the concept itself proved to be flexible enough.

Integrating extensions is not very easy. Currently the files and the settings in the custom factory have to
be installed by hand. Both the module files, the frontend controller and the administration interface for the
backend could be packed together into one file and installed via a plugin interface in the backend.

4.10 Performance

A lot of effort has been made to get the best performance. Database queries have been reduced to a minimum,
indexes have been created and the remaining queries where optimized. Analyzed templates are stored in
the template cache. Fragments and complete pages can be cached as well.
89 http://en.wikipedia.org/wiki/SQL_Injection
90 http://en.wikipedia.org/wiki/Cross-site_scripting
91 http://www.opage.at

111

http://en.wikipedia.org/wiki/SQL_Injection
http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.opage.at

4.11 Lessons learned

For optimal performance, PHP should run either as an Apache module or as FastCGI module in Microsofts
Internet Information Server, and be supported by a bytecode-cache like eAccelerator or Zend Optimizer to
reduce the compileer overhead. The factory class includes source files only when needed (similar to the
autoloading mode introduced with PHP 5), so only used files are loaded and have to be compiled.

On Web sites with performance issues, the trace mode can be activated, where slow database queries are
documented. Another good place to look at is the slow query log of MySQL. Using PHP 5 and MySQL 5
instead of PHP 4 and MySQL 4 also brings a huge performance boost.

4.11 Lessons learned

At the first look the separation of logic, content and layout is not as easy as it seams. The difficult question
is, how much logic is needed in the layout, speaking what kind of operations are put into the template engine
and what stays in the controller script.

The template engine used in oPage replaces template variables with values. There are no operations to
process an array of records, like in Smarty template engine92 or PHPTAL93. In oPage the module assigns
record per record to the template engine and calls the parse method for the required blocks. The controller
script predefines the structure (the hierarchy of blocks, not the layout) of the template. For example the
article module uses the sub modules paragraph and picture. In the template, the pictures are only available
below the paragraph within the article block hierarchy (see section 3.8.8 on page 72 for an example). In
some cases, where this concept is to inflexible, the controller script (the logic) can be modified to provide
the data in a more convenient way.

The oPage’s module hierarchy concept in combination with the template engine has been also implemented
in C# and VBScript. The C# version is used on a Web site, which provides press and media review
collections in a customer specific layout and design for more then 300 clients. The VBScript variant is
used to query content from a database and to create HTML, XML, RTF, PDF, CSV and text files, which are
further processed by other applications.

oPage has to be very flexible so that different types of frontends can be implemented. It should also support
the reuse of existing features in new projects. This worked well so far in the backend, since the backend
has the same structure in all projects. It’s more difficult to reuse a guestbook or a forum and be flexible
enough to implement project specific needs. A derived quest book module can implement project specific
behavior by overwriting the form action methods of the base class (see section 3.14.1 on page 82). Module
fields can be activated as needed in the factory. The existing form template fragments can be styled globally
with cascading style sheets or with the style parameter of the FILE statement. A drawback of this flexibility
is, that there are many places, where customizations can be implemented, in depth knowledge of the oPage
framework is necessary to decide, which is the best solution.

The final architectural decision has to be made by the software developer, whether to use a central controller
or a separate script for each area (like news, shop or guest book). Personally, I have switched to using a
central controller script, which includes fragments containing the logic depending on the given parameters.
It makes reusing of components a bit easier as well as URL rewriting for search engine optimization
purposes.

92 http://www.smarty.net/
93 http://phptal.motion-twin.com/

112

http://www.smarty.net/
http://phptal.motion-twin.com/

5 Future Work

A software project like the oPage framework is usually never finished. New releases of the programming
language PHP will offer advanced possibilities like aspect oriented programming94. Rising technologies
like AJAX and Web services allow smoother user interfaces, but require a different application design.

Not all this cool new features can be used immediately, it takes some time till the updated infrastructure
becomes available at the Internet service providers.

In this chapter some interesting points of improvement are described, which will make the oPage framework
more useful.

5.1 Installation

Currently the installation of oPage has to by done manually. A zip archive has to be downloaded
from the oPage distribution site and unzipped. Then the framework has to be configured by modifying
custom/config.php. After all files have been uploaded to the Web space the correct permissions have to be
applied.

A installation and configuration wizard could help users to install and configure the framework on their Web
space.

First a PHP package (e.g. PHAR95 or PHK96) can to be downloaded from the distribution Web site and
uploaded to the users Web space. The archive can be opened in the browser, which starts the setup process.
First it checks the system for compatibility, asks a view questions, installs the files and sets the correct file
system permissions. After the installation is completed, the script should ask, if it should delete itself from
the server. If something can not be done by the script (e.g. because of PHP security settings), the user has
to be informed and the necessary commands have to be displayed.

In the backend a configuration Wizard could help editing the settings in custom/config.php. Therefor the
Web server needs write access to the file, which may be a security issue. Another option may be a download
link to the newly created file, which the user can use to replace the original file.

5.2 Template Engine

The current template engine supports logical operations on block names. Currently only & (and) and | (or)
operators are supported and only one type of operator at a time. Here is space for improvement. The ! (not)
operator could be added to get blocks parsed when another block is not parsed.

1 <!-- !block1&!block2 -->

2 This text is displayed, if block1 and block2 are both *not* parsed.

3 <!-- END: !block1!&block2 -->}.

Combined logical operations would be useful as well.

1 <!-- block1&(block2|!block3) -->

2 This text is displayed, if block1 and block2 or block1 but not block3 are parsed.

3 <!-- END: block1&(block2|!block3) -->}.

The encoding and formating of values should be extended to provide a free use of combinations of
encoding and formating parameters. {variable|list /|size kb|number 2, |printf %10s#html} would
split the value into parts separated by /, which are later formated by the size operator and by the number
operator. The result will be run through the printf statement before the result is returned to the list statement.

94 http://phpaspect.org/
95 http://www.php.net/phar/
96 http://pecl.php.net/package/PHK/

113

http://phpaspect.org/
http://www.php.net/phar/
http://pecl.php.net/package/PHK/

5.6 Plugin System

Also a combination of #text, #plain, #nbsp and #slashed, etc. should be possible. {variable#text#plain

#slashed} would convert the value into plain text, replace the newlines with spaces and escape the single
quotes in the result with a slash.

5.3 Multilanguage resources

Currently the resource files are plain text files (section 3.5.8 on page 59). No support tools exist to create
texts for different languages or to track changes and additional text entries. A proper standard format should
be used instead, for which editor and management tools are available. Standards like gettext97 or TMX98

should be examined.

5.4 Automatic checking of external links

Every time a record is save, the system could look for links to external Web sites and run a check, if the
target is available. The link, a reference to the content record, the HTTP result and a time stamp should be
stored in a database table. When the content record is updated or deleted, the according rows in the external
links table have to be updated as well. Based on the timestamp, checks can be limited to one per day. Once
a week, all entries in the links table can be checked by a script started from a cron job or initiated by the
frontend. The result could be sent by email to the Web master of the Web site (or to an email address set in
the parameters table).

5.5 Access statistics

Currently the counter table contains only rudimental data, which are not properly analyzed.

The counter module could be extended to provide a graphical report for the collected data. It also could be
extended to collect additional information like browser, client IP, access time and unique user ID. With this
data reasonably charts for a page or the Web site can be created: Top 10 pages, number of unique users,
visits, click paths, entry and exit pages, and in combination with GeoIP99 even the location of the user can
be reported.

A lot of this information is already provided by logfile analyzers like AWstats100 or can be collected using
Google Analytics101, but the results would be more exact, when the framework tracks the access and creates
the statistics.

5.6 Plugin System

Extensions to the framework could be provided as a PHAR file, which contains all the files and a setup
script. A typical guestbook contains the module, templates for the backend list- and detail-view, resource
files for language dependent texts, images, templates and a controller script for the frontend. A general
setup script could be called to integrate the extension. It should be possible to extend the setup script by the
plugin. An uninstall script should be provided as well. Also a wizard, which creates the basic structure of
an extension would be interesting.

The module, the backend files and the frontend part should be separated and the dependences between and
to other packages should be noted. When a package is installed, all the depending packages should be
installed or updated as well. This makes it easier to create plugins, which reuse parts of other extensions.
For example, the newletter system uses the person module to manage the recipients, the category module to
group the entries and the news module for the newsletter content.

97 http://www.gnu.org/software/gettext/
98 http://www.lisa.org/standards/tmx/tmx.htm
99 http://www.maxmind.com/app/geolitecity
100 http://awstats.sourceforge.net/
101 http://www.google.com/analytics/

114

http://www.gnu.org/software/gettext/
http://www.lisa.org/standards/tmx/tmx.htm
http://www.maxmind.com/app/geolitecity
http://awstats.sourceforge.net/
http://www.google.com/analytics/

5 Future Work

5.7 Workflow

Based on the user roles (see section 2.3 on page 13) according privileges could be set. A workflow could be
defined for each module. E.g. an author is allowed to create a news entry, but does not have the permission
to switch it online. With a new workflow button in the backend, the state of the record could be changed
from new to review and owner of the record could be set to the next user in the workflow chain. The
transition of the owner can be configured by rules, which depend on the data of the record. E.g. an editor
may be only responsible for news items of a specific section of the Web site or for just a group of authors.
All changes should be tracked in a workflow log.

5.8 Backend homepage

The backend start page is currently not properly used, only a welcome message is displayed. It would be a
good location for Web site specific information: The number of users currently in the frontend, the number
of backend users online, the number of active, perpared and inactive news items, the access statistics of the
current day, week, month and year could be displayed. Also the open entries of a todo list or a list of new
messages from the users inbox could be presented. The displayed blocks and the location on the screen
should be customizable by each backend user and stored in the their profiles.

By using predefined rules, the system could display warnings on this page. E.g. “currently only two news
items are displayed.”, “The newest news entry is older then five days.”, “There is one new order in the online
shop.”, “You have five unhandled issues in the ticket system.”, “Seven responses to your messages are in
the forum.”. Each of this warnings should be linked with the module page, where the relevant records are
displayed.

5.9 Summery

With new projects new challenges will arise, which drive the development of oPage. The template engine
syntax will become more powerful and the database layer may be changed to PHPs database objects
(PDO102) library. The backend user interface may be redesigned and AJAX features should be added.

Currently, oPage still can be run using PHP4, since this version is widely used at internet service providers.
With the discontinued development of PHP4, oPage will stop supporting PHP4. This will allow the use of
all new object oriented features PHP5 is offering and will increase code quality and application security and
stability.

102 http://www.php.net/pdo

115

http://www.php.net/pdo

116

6 Conclusion

In this thesis I presented the oPage framework for Web based content management systems. It provides an
infrastructure, which supports and speeds up the development process. It is more specific than a general
purpose framework like ASP.NET, but more flexible than content management systems like TYPO3 or
Joomla!.

oPage runs on any popular server platform, has a modular design and can be customized and extended in
many ways. Logic, content and layout are separated. Web designers can create and modify layout templates
without the need of PHP programming experience. Small PHP scripts provide the processing logic and
glue together the framework objects. The page object provides the frame for the content objects, which
are derived from the module and control base classes. All instances of classes are created by a factory.
This is the first location to customize the framework, but many other places exist, where modifications
and extensions are possible. The content is stored in a relational database (e.g. MySQL), each table is
represented by a module class. Modules can be joined to a hierarchy to map database relations. Special
modules exist to handle m:n relations. The frontend uses the modules to query and display the content.
In the backend, the modules are used to configure the forms, and to create, retrieve, update and delete the
records. The core and the backend files can be shared among different projects. The user interface in the
backend is easy to use and similar for all modules.

A lot of effort has been made to get the best performance. By activating the cache, the performance can be
increased even more.

Internationalization and localization of Web sites is supported. The framework provides an infrastructure
to build multi language Web sites. The backend user interface can be made available in different languages
by adding resource files.

oPage proved to be flexible. A number of Web sites have been created with the framework. All requirements
could be fulfilled. Extensions to the framework have been made, but the basic concept stayed the same.

Further research need to be done to make oPage even more flexible. Installation is not as easy as it could
be. The template engine could learn a few more tricks. External links should be checked regularly. The
access statistics could have more details and should be presented on the start page of the backend. A
plugin system and an extension manager, which handles installing, updating and removing of packages,
would be a nice feature. Reusing modules and backend files is very easy, but the frontend scripts have to
be adapted for every Web site. By defining a set of configurable features for frontend extensions would
provide standardized packages, which could be reused in many projects. A configurable workflow engine
would be a nice feature for enterprise Web sites.

A framework like oPage is never finished. New requirements arise, new technologies are invented and better
design approaches are developed.

117

118

References

[AES02] Dave Addey, James Ellis, and Phil Suh. Content Management Systems. Peer Information Inc.,
2002.

[AKM] AKM Autoren, Komponisten und Musikverleger. http://www.akm.co.at.

[Avg05] Paris Avgeriou. Architectural patterns revisited - a pattern language. In Proceedings of 10th
European Conference on Pattern Languages of Programs (EuroPlop 2005), pages D3 1–39,
Irsee, Germany, July 2005.

[BHMH03] Dr. Peter Baumgartner, Mag. Hartmut Häfele, and Mag. Kornelia Maier-Häfele. Evaluation
von content management systemen (studie kurzfassung). Österreichisches Bundesministerium
für Bildung, Wissenschaft und Kultur, 2003.

[BL01] Paul Browning and Mike Lowndes. Content management systems. JISC TechWatch Report,
September 2001.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American,
284(5):34–43, May 2001.

[CDIW05] Jim Challenger, Paul Dantzig, Arun Iyengar, and Karen Witting. A fragment-based approach
for efficiently creating dynamic web content. ACM Transactions on Internet Technology
(TOIT), 5(2), May 2005.

[Dem] Demmer Handelsgesellschaft. http://www.demmer.at.

[DH01] Yogesh Deshpande and Steve Hansen. Web engineering: creating a discipline among
disciplines. IEEE MultiMedia, 8(2):82–87, April-May 2001.

[GM01] Athula Ginige and San Murugesan. Web engineering - an introduction. IEEE MultiMedia,
8(1):14–18, January-March 2001.

[Hac02] JoAnn T. Hackos. Content Management for Dynamic Web Delivery. Wiley Computer
Publishing, 2002.

[JM02] Stefan Jablonski and Christian Meiler. Web-content-managementsysteme. Springer
Informatik-Spektrum, 25(2):101–119, April 2002.

[KaC01] Othmar Kyas and Markus a Campo. Internet Professionell. mitp, 2001.

[Ker03] Clemens Kerer. XGuide - Concurrent Web Development with Contracts. PhD thesis, Technical
University of Vienna, Austria, May 2003.

[KPRR04] Gerti Kappel, Birgit Pröll, Siegfried Reich, and Werner Retschitzegger. Web Engineering,
chapter 1. Web Engineering. dpunkt.Verlag, 1 edition, 2004.

[Lei01] Helmut Leitner. Die Geschichte des Wiki Web. http://www.wikiservice.at/wikiweb/wiki.

cgi?DieGeschichteDesWikiWeb, 2001. WikiWebAt.

[Low99] David Lowe. Web engineering or web gardening? Webnet Journal: Column Engineering the
Web, 1(1), 1999.

[Mic04] Dimitrios Michelinakis. Open source content management systems: An argumentative
approach. The University of Warwick, Warwick Manufacturing Group, 2004.

[MW94] Gunther Maier and Andreas Wildberger. In 8 Sekunden um die Welt. Addison Wesley, 1994.

[Nak01] Russell Nakano. Web Content Management. Addison-Wesley Professional, September 2001.

[oPa] oPage Homepage. http://www.opage.at.

119

http://www.akm.co.at
http://www.demmer.at
http://www.wikiservice.at/wikiweb/wiki.cgi?DieGeschichteDesWikiWeb
http://www.wikiservice.at/wikiweb/wiki.cgi?DieGeschichteDesWikiWeb
http://www.opage.at

References

[Ped04] Jan Keller Pedersen. Xoops comparison: A study of open source content management. IT
University of Copenhagen, 2004.

[PHP] Php documentation. http://www.php.net/manual/en/introduction.php.

[RDF] Resource description framework (rdf). http://www.w3.org/RDF/. World Wide Web Consor-
tium.

[RR01] Gunther Rothfuss and Christian Ried. Content Management mit XML. Springer, 2001.

[Wer05] Thomas Werres. Cms – potenziale und grenzen von typo3. Hausarbeit, Fachhochschule
Koblenz RheinAhrCampus Remagen, 2005.

[Wöh04] Heiko Wöhr. Web-Technologien. dpunkt.Verlag, 2 edition, 2004.

[Wika] Wikipedia The Free Encyclopedia. Content management system. http://en.wikipedia.org/

wiki/Content_management_system.

[Wikb] Wikipedia The Free Encyclopedia. Web Content management system. http://en.wikipedia.
org/wiki/Web_content_management_system.

[WS00] Udo Winand and Jörg Schellhase. Content management systems. wisu das wirtschaftsstudium,
29(10):1334–1345, October 2000.

[ZTZ02] Oliver Zschau, Dennis Traub, and Rik Zahradka. Web Content Management - Websites
professionell planen und betreiben. Galileo Business, 2 edition, 2002.

120

http://www.php.net/manual/en/introduction.php
http://www.w3.org/RDF/
http://en.wikipedia.org/wiki/Content_management_system
http://en.wikipedia.org/wiki/Content_management_system
http://en.wikipedia.org/wiki/Web_content_management_system
http://en.wikipedia.org/wiki/Web_content_management_system

List of Tables

1 CMS comparison . 21
2 Global and local values . 56
3 oPage specific global and local values . 56
4 template parameters provided by CPageWeb . 74
6 Directories of the core system . 132
7 Directories of the administration system . 132
8 Directories for the website . 133

121

122

List of Figures

1 Web site www.opage.at . 5
2 Administration interface of www.opage.at . 6
3 Web Content Management System [ZTZ02, p. 70] . 9
4 Content Life Cycle [BL01] . 10
5 Relationsship between Web site management and content management [WS00, p. 1334] . 11
6 Content Management . 12
7 The CMS feature onion [BL01, p. 6] . 14
8 TYPO3 backend . 22
9 Drupal backend . 24
10 Joomla! backend . 27
11 eZ publish backend . 29
12 oPage structure . 35
13 sample page screenshot . 36
14 oPage dataflow . 37
15 oPage architecture . 37
16 oPage sample page . 38
17 oPage system . 39
18 Backend administration form for an article (detail view) 74
19 oPage backend schema . 86
20 Backend administration form for an article (list view) . 86
21 Backend administration form for an article (detail view) 88
22 data export . 90
23 import form . 91
24 user details . 94
25 group details . 95
26 right details . 96

123

124

Listings

1 example index.php . 37
2 example index.htm . 38
3 Factory.php . 51
4 Template Engine sample1.php . 53
5 Template Engine sample1.tpl . 54
6 Template Engine sample2.php . 55
7 Template Engine sample2.tpl . 55
8 module CContent . 60
9 config.php sample . 64
10 index.tpl sample . 65
11 table.tpl sample . 69
12 Guestbook add script . 80
13 Guestbook add template . 81
14 modul.php form methods . 82
15 pager.php sample . 83
16 pager.tpl sample . 84
17 pager_small.tpl template block sample . 84
18 List View (admin/custom/index.php) . 87
19 custom factory.php for preview . 91
20 news detail.php . 92
21 preview part in modul.php . 93
22 custom/admin/setup/modul.php . 97
23 custom/admin/setup/page.php . 97
24 custom/opage.php . 98
25 custom/webpage.php . 98
26 custom/factory.php . 100
27 custom/modul/contenthomepage.php . 102
28 custom/custom_hook.php . 103
29 parts/news.php with content caching . 106
30 modul.php search method . 107
31 Sample administration template: Metatags (list view) . 133
32 Sample administration template: Metatags (detail view) 134
33 Modul block description . 135

125

126

A Appendix

A.1 PHP

According to the PHP manual[PHP], “PHP (recursive acronym for ‘PHP: Hypertext Preprocessor’ or former
‘Personal Home Page Tools’) is a widely-used Open Source general-purpose scripting language that is
especially suited for Web development and can be embedded into HTML.”

Web sites:
Homepage: http://www.php.net
Description: http://en.wikipedia.com/wiki/Php

Usage:
As of July 2007, PHP is used at 21 million domains with 1.2 million IP addresses103.

History:
The development of PHP started in late 1994 by Rasmus Lerdorf. Zeev Suraski and Andi Gutmans made a
rewrite of the language engine and some of the most popular modules and helped to create PHP 3.0, which
became broad available at ISPs (1998). Currently used are PHP Versions 4 and 5, developed mainly at
ZEND.

Architecture:
PHP code is executed on the Web server. Both source code and precompiled code can be interpreted by
the core language engine called ZEND engine. This engine can be called by the Web server as a module
(SAPI) or as executable program using CGI. Many functions of PHP are part of the core engine, but more
are implemented as extensions: e.g. database access, PDF functions, SSL, XML. PHP files use to have the
file extension “.php”.

Supported operating systems:
Linux, Mac OS X, Solaris, Unix, Windows

Supported Web servers:
Apache, Microsoft IIS, Caudium, Sun, iPlanet, Netscape servers and all Web servers supporting CGI.

Language features:
PHP can be embedded into HTML code. The language is very loose. Variables do not have to be declared
and can hold any type of data. Object-oriented programming support was limited until version 4, with
version 5 object-oriented functionality has been very much enhanced and is more robust and complete.
PHP is fundamentally Web aware and has built-in support for accessing Web and FTP servers. Libraries for
accessing SQL servers are also included.

Criticisms:
PHP is a scripting and dynamically typed language. It does not enforce the declaration and initialization of
variables. The return value of the a function may be boolean (FALSE if the function fails) or integer (even
0 if the function succeeds, but which evaluates like FALSE). File system security is difficult, when PHP is
used as a server module with Apache Web server.

A.2 Coding Standards

In reference to Pear Coding Standards104, the following coding standards apply.

If it was hard to write it should be hard to understand... well. I like whitespace. I use spaces rather often. I
also like new lines, empty lines and comments. I also have my own way treating default values for function
arguments (see below).

103 http://www.php.net/usage.php
104 http://pear.php.net/manual/en/standards.php

127

http://www.php.net
http://en.wikipedia.com/wiki/Php
http://www.php.net/usage.php
http://pear.php.net/manual/en/standards.php

A.2 Coding Standards

These coding standards work for me since 20 years. I know there are other coding standards (e.g. Pear), but
I prefer my own style, because I think the source code is more readable compared to Pear.

These are rather common coding conventions, which should be applied appropriately to the programming
language used.

A.2.1 Indenting

I use an indent with 4 spaces, no tabs.

A.2.2 Control Structures

Please note the separate lines for “{”, “}” and the extra spaces previous and after “(” and “)”. This is in
contrast to the pear standard, but it increases readability (at least in my opinion).

1 if ((condition1) || (condition2))

2 {

3 action1();

4 action2();

5 }

6 elseif ((condition3) && (condition4))

7 action3(’with parameter’);

8 else

9 {

10 echo ’using default action’;

11 defaultaction();

12 }

Please note that “case” and “break” match at the same column and that there is a empty line between “break;”
and the next “case”.

1 switch (condition)

2 {

3 case 1:

4 action1();

5 break;

6
7 case 2:

8 action2(’param1’, ’param2’);

9 break;

10
11 default:

12 defaultaction();

13 break;

14 }

A.2.3 Assignments

Although I love whitespace within source code, I don’t like spaces to align assignments, because when a
new assignment is added, which is longer then the ones already there, several lines have to be changed.
Please note the spaces before and after the “=”.

1 $iShort = 0x815;

2 $iLongVariable = 4711;

128

A Appendix

A.2.4 Function Calls

When a function is called, there is no extra space in front of “(” opening the arguments list. Since the “)” is
the last character of the code, there is no extra space after “)”.

1 $var = Foo($bar, $baz, $quux);

A.2.5 Function Definitions

I use as default argument always null. This makes my life a lot easier when inheriting classes and
overwriting methods. Please note the empty lines before the second “if” statement and the return statement.
I treat the return statement like a function, so I call it with parentheses.

1 function Foo($sArg1, $iArg2 = null)

2 {

3 if (is_null($iArg2))

4 $iArg2 = 13;

5
6 if (condition)

7 {

8 statement;

9 }

10
11 return($val);

12 }

A.2.6 Comments

I use both single-line comments and multi-line comments. For automatic documentation creation, I also
use PHPDoc style comments. To comment changes within the source I insert the current date and an
abbreviation of my name consisting of the first two letters of my last name and the first letter of my first
name.

1 /** PHPDoc comment for function declaration

2 @param: blahblah

3 @return: blahblah

4 */

5 Function Func($sParam)

6
7 /** PHPDoc comment for variable declaration

8 */

9 var $sVar;

10
11 // Single-line inline comment

12
13 /*
14 2007.07.21 DOH:

15 Multi-line inline comment documenting some change

16 */

A.2.7 Header Comment Blocks

I don’t like the idea of drawing frames around comments (like in Pear). It makes life a trap, when you
rewrite the comment. One line of comment should not exceed around 76 to 80 characters. There’s no hard

129

A.2 Coding Standards

rule to determine when a new code contributor should be added to the list of authors for a given source file.
In general, their changes should fall into the “substantial” category (meaning somewhere around 10% to
20% of code changes). Exceptions could be made for rewriting functions or contributing new logic.

Simple code reorganization or bug fixes would not justify the addition of a new individual to the list of
authors.

All files should include modification comments to encourage consistency.

Use some tags to automatically track filenames and version numbers supplied by the source code repository
software like Subversion, CVS or Microsoft Visual SourceSafe.

1 <?php

2 /* vim: set expandtab tabstop=4 shiftwidth=4: */

3
4 /*
5 Program or library name

6 Copyright (c) 1997-2007 by the copyright holder

7
8 Some blah blah about the purpose of the file.

9
10 Authors:

11 2007-01-01 Original Author <author@example.com> (XXX)

12 2007-07-01 Your Name <you@example.com> (YYY)

13
14 $Archive: $

15 $Author: $

16 $Date: $

17 $Revision: $

18 */

19 ?>

A.2.8 Include

I treat include statements as statements, not as functions. So the parentheses are omitted.

1 include_once ’filename1.php’;

2 require_once ’filename2.php’;

A.2.9 Code Tags

In PHP only <?php and ?> are used.

A.2.10 Example URLs

Use “example.com”, “example.org” and “example.net” for all example URLs and email addresses, per RFC
2606105.

A.2.11 Naming Conventions

Classes

Names of classes always start with the capital letter “C”. To represent a hierarchy, use capital letters within
the class name.
105 http://www.faqs.org/rfcs/rfc2606

130

http://www.faqs.org/rfcs/rfc2606

A Appendix

Here are some examples:

1 CPoll

2 CPollAnswer

3 CWebpage

4 CWebpageX

5 CWebpageCounter

Functions and Methods

Function names start with a capital letter. Private methods should start with a “_” to separate internal
functions from public ones.

Constants

The names of constants should be capitalized.

1 define(’CONST’, 1);

Variables

Variables (and function arguments) start with a lowercase letter identifying the the type of the variable. As
far as I know this concept has been introduced as Hungarian notation at the beginning 90s in the last century.
I adopted this concept as follows:

type prefix example
Array a aArray
Boolean f fYesNoTrueFalse
Constant c cConst
Date d dDate
Float i i

iCurrency
Integer i i

iNumber
Long i i

iLongNumber
Object o oObject
Resources o oFile
String s sBuffer

Note, that I use a single letter “i” (or “j” or “k” if I need more) for loops, since “iI” or “iK” do not look that
nice.

Global Variables

I use global variables only when necessary. E.g. for objects like oApp, oFactory, oDb or oParameter.

A.3 Directory structure

A.3.1 oPage core system

All files necessary files for both the administration system and the website are stored here. These files and
directories are not intended to be changed by the Web master or editor. If you need to customize a module,
you can do this in custom/factory.php and by creating a derived class in custom/modul/.

131

A.3 Directory structure

Table 6: Directories of the core system

directory description
include/ Core system code
include/captcha/ Files to generate a CAPTCHA image (used in forms to avoid automated

form submits - e.g. guestbook spam)
include/control/ Control classes like form, mail or pager
include/database/ Database classes for various database systems
include/email/ Class for sending emails
include/javascript/ JavaScript code for creating cookies, form validation or popup windows
include/modul/ Module classes like news or guest book
include/resource/ Language resources
include/template/ Template parts
include/tpl/ Template engine

cache/ Cached versions of templates and pages, must be writable by the Web server
counter/ Used to increase a counter
download/ Increase a counter and offer a file for download
popup/ Open an image in a separate window
redirect/ Increase a counter and redirect the user to another website
static/ All images and files related to modules, must be writable by the Web server
temp/ Import and export files are temporarily stored here

A.3.2 Administration system

This is the administration system for your website. These files and directories are not intended to
be changed by the Web master or editor. If you want to add additional modules, you can change
custom/admin/navigation.php.

Table 7: Directories of the administration system

directory description
admin/ Administration system
admin/custom/ Base classes, template and style files
admin/custom/detail/ Template parts for detail pages
admin/custom/index/ Template parts for index pages
admin/custom/resource/ Language resources for administration system
admin/custom/template/ Template parts for pages
admin/home/ Default page of content frame
admin/images/ Images used in administration system
admin/images/buttons/ Buttons used in index and detail pages
admin/images/content/ Images used in index pages
admin/images/detail/ Images used in detail pages
admin/images/navigation/ Images used in navigation page
admin/images/preview/ Code for the preview system

admin/counter/ Administration pages for the standard module counter
admin/metatags/ Administration pages for the standard module metatags
admin/parameter/ Administration pages for the standard module parameter
admin/user/ Administration pages for the standard module user

A.3.3 Website

Feel free to create as many directories as you like as long as they do not interfere oPage core system or
administration system directories. It is a good idea to use self-explaining directory names and separate

132

A Appendix

different sections of your website into different directories like news/ or guestbook/.

Table 8: Directories for the website

directory description
custom/ Base class, template and style files for the website
custom/admin/ Files to customize the administration system
custom/error/ Error page called in a state of emergency like no connection to the database
custom/javascript/ Website specific javascript files
custom/modul/ Derived or new modules
custom/resource/ Website specific language resources which can overrule core and adminis-

tration resource entries
images/ Images for the website basic layout

A.4 Administration interface templates

Listing 31: Sample administration template: Metatags (list view)

1 <!-- BEGIN: main -->

2
3 <!-- BEGIN: admin -->

4 {FILE "admin/custom/index/#begin.tpl"}

5
6 <!-- BEGIN: admin_filter -->

7 {FILE "admin/custom/index/filter#begin.tpl"}

8 {FILE "admin/custom/index/filter_title.tpl" name="id" align="left"}

9 {FILE "admin/custom/index/filter_title.tpl" name="name" align="left"}

10 {FILE "admin/custom/index/filter_title.tpl" name="abstract" align="left"}

11 {FILE "admin/custom/index/filter_title.tpl" name="author" align="left"}

12 {FILE "admin/custom/index/filter_title.tpl" name="revisit" align="left"}

13 {FILE "admin/custom/index/filter#between.tpl"}

14 {FILE "admin/custom/index/filter_input.tpl" name="id" align="left"}

15 {FILE "admin/custom/index/filter_input.tpl" name="name" align="left"}

16 {FILE "admin/custom/index/filter_input.tpl" name="abstract" align="left"}

17 {FILE "admin/custom/index/filter_input.tpl" name="author" align="left"}

18 {FILE "admin/custom/index/filter_input.tpl" name="revisit" align="left"}

19 {FILE "admin/custom/index/filter#end.tpl"}

20 <!-- END: admin_filter -->

21
22 {FILE "admin/custom/index/#pager.tpl"}

23 {FILE "admin/custom/index/#buttons.tpl"}

24
25 {FILE "admin/custom/index/sort#begin.tpl"}

26 {FILE "admin/custom/index/#selectall.tpl"}

27 <!-- BEGIN: admin_sort -->

28 {FILE "admin/custom/index/sort_title.tpl" name="id" align="left"}

29 {FILE "admin/custom/index/sort_title.tpl" name="name" align="left"}

30 {FILE "admin/custom/index/sort_title.tpl" name="abstract" align="left"}

31 {FILE "admin/custom/index/sort_title.tpl" name="author" align="left"}

32 {FILE "admin/custom/index/sort_title.tpl" name="revisit" align="left"}

33 {FILE "admin/custom/index/sort#between.tpl"}

34 {FILE "admin/custom/index/sort_field.tpl" name="id" align="left"}

35 {FILE "admin/custom/index/sort_field.tpl" name="name" align="left"}

36 {FILE "admin/custom/index/sort_field.tpl" name="abstract" align="left"}

37 {FILE "admin/custom/index/sort_field.tpl" name="author" align="left"}

38 {FILE "admin/custom/index/sort_field.tpl" name="revisit" align="left"}

133

A.4 Administration interface templates

39 <!-- END: admin_sort -->

40 {FILE "admin/custom/index/sort#end.tpl"}

41
42 <!-- BEGIN: ROW -->

43 {FILE "admin/custom/index/edit#begin.tpl"}

44 {FILE "admin/custom/index/edit_readonly.tpl" name="id" align="left" width=""}

45 {FILE "admin/custom/index/edit_readonly.tpl" name="name" align="left" width=""}

46 {FILE "admin/custom/index/edit_limited.tpl" name="abstract" align="left" width=""}

47 {FILE "admin/custom/index/edit_input.tpl" name="author" align="left" width=""}

48 {FILE "admin/custom/index/edit_input.tpl" name="revisit" align="left" width=""}

49 {FILE "admin/custom/index/edit#end.tpl"}

50 <!-- END: ROW -->

51
52 {FILE "admin/custom/index/#footer.tpl"}

53 {FILE "admin/custom/index/#end.tpl"}

54 <!-- END: admin -->

55
56 <!-- END: main -->

Listing 32: Sample administration template: Metatags (detail view)

1 <!-- BEGIN: main -->

2
3 <!-- BEGIN: admin -->

4 {FILE "admin/custom/detail/#begin.tpl"}

5
6 <!-- BEGIN: ROW -->

7 {FILE "admin/custom/detail/#header.tpl"}

8 {FILE "admin/custom/detail/#language.tpl"}

9 {FILE "admin/custom/detail/state#begin.tpl"}

10 {FILE "admin/custom/detail/state#default.tpl"}

11 {FILE "admin/custom/detail/state#end.tpl"}

12 {FILE "admin/custom/detail/edit#begin.tpl"}

13 <table border="0" cellpadding="4" cellspacing="4" width="100%" class="'

opage_fieldsection">

14 <tr valign="top">

15 <td class="opage_fieldarea">

16 <table border="0" cellpadding="2" cellspacing="0">

17 <tr valign="top">

18 {FILE "admin/custom/detail/edit_input.tpl" name="name" colspan="2"}

19 </tr>

20 <tr valign="top">

21 {FILE "admin/custom/detail/edit_input.tpl" name="author" width="100%" style="width'

: 100%;"}

22 {FILE "admin/custom/detail/edit_input.tpl" name="revisit" style="width: 100%;"}

23 </tr>

24 </table>

25 </td>

26 </tr>

27 <tr valign="top">

28 <td class="opage_fieldarea">

29 <table border="0" cellpadding="2" cellspacing="0" width="100%">

30 <tr>

31 {FILE "admin/custom/detail/edit_textarea#counter.tpl" name="abstract" style="'

width: 100%;"}

32 </tr>

33 <tr>

134

A Appendix

34 {FILE "admin/custom/detail/edit_textarea#counter.tpl" name="description" style'

="width: 100%;"}

35 </tr>

36 <tr>

37 {FILE "admin/custom/detail/edit_textarea#counter.tpl" name="keywords" style="'

width: 100%;"}

38 </tr>

39 </table>

40 </td>

41 </tr>

42 </table>

43 {FILE "admin/custom/detail/edit#end.tpl"}

44 {FILE "admin/custom/detail/#footer.tpl"}

45 <!-- END: ROW -->

46
47 {FILE "admin/custom/detail/#end.tpl"}

48 <!-- END: admin -->

49
50 <!-- END: main -->

Listing 33: Modul block description

1 <!-- BEGIN: main -->

2
3 <!-- BEGIN: modul#header -->

4 for subblocks see ’modul’ block

5 <!-- END: modul#header -->

6
7 <!-- BEGIN: modul -->

8
9 <!-- BEGIN: empty -->

10 <!-- END: empty -->

11
12 <!-- BEGIN: GROUP_{group}_begin -->

13 <!-- BEGIN: _default_ -->

14 <!-- END: _default_ -->

15 <!-- BEGIN: {groupvalue} -->

16 <!-- END: {groupvalue} -->

17 <!-- END: GROUP_{group}_begin -->

18
19 <!-- BEGIN: HEADER -->

20 <!-- END: HEADER -->

21
22 <!-- BEGIN: DATA --> or <!-- BEGIN: DATA{iRow} -->

23
24 <!-- BEGIN: LEVEL{iLevel} -->

25
26 <!-- BEGIN: ROW{iSection} -->

27
28 <!-- BEGIN: COL{iCol} -->

29
30 <!-- BEGIN: {modul_}{template}#begin -->

31 for subblocks see ’{modul_}{template}’ block

32 <!-- END: {modul_}{template}#begin -->

33
34 <!-- BEGIN: {modul_}{template} -->

35

135

A.4 Administration interface templates

36 <!-- BEGIN: {field}#empty --><!-- END: {field}#empty -->

37
38 <!-- BEGIN: {field}#header --><!-- END: {field}#header -->

39 <!-- BEGIN: {field}#begin --><!-- END: {field}#begin -->

40
41 <!-- BEGIN: {field}={value}#begin --><!-- END: {field}={value}#'

begin -->

42 <!-- BEGIN: {field}={value} --><!-- END: {field}={value} -->

43 <!-- BEGIN: {field}={value}#end --><!-- END: {field}={value}#end'

-->

44
45 <!-- BEGIN: {field}<>0#begin --><!-- END: {field}<>0#begin -->

46 <!-- BEGIN: {field}<>0 --><!-- END: {field}<>0 -->

47 <!-- BEGIN: {field}<>0#end --><!-- END: {field}<>0#end -->

48
49 <!-- BEGIN: {field}<>1 --><!-- END: {field}<>1 -->

50
51 <!-- BEGIN: {field} --><!-- END: {field} -->

52
53 <!-- BEGIN: {field}#end --><!-- END: {field}#end -->

54 <!-- BEGIN: {field}#footer --><!-- END: {field}#footer -->

55
56 <!-- BEGIN: {field}#notempty --><!-- END: {field}#notempty -->

57
58 <!-- BEGIN: {field}#yes#begin --><!-- END: {field}#yes#begin -->

59 <!-- BEGIN: {field}#yes --><!-- END: {field}#yes -->

60 <!-- BEGIN: {field}#yes#end --><!-- END: {field}#yes#end -->

61
62 <!-- BEGIN: {field}#no#begin --><!-- END: {field}#no#begin -->

63 <!-- BEGIN: {field}#no --><!-- END: {field}#no -->

64 <!-- BEGIN: {field}#no#end --><!-- END: {field}#no#end -->

65
66 <!-- END: {modul_}{template} -->

67
68 <!-- BEGIN: {modul_}{template}#end -->

69 for subblocks see ’{modul_}{template}’ block

70 <!-- END: {modul_}{template}#end -->

71
72 <!-- END: COL{iCol} -->

73
74 <!-- BEGIN: COL{iCol}_empty -->

75 <!-- END: COL{iCol}_empty -->

76
77 <!-- END: ROW{iSection} -->

78
79 <!-- END: LEVEL{iLevel} -->

80
81 <!-- BEGIN: BETWEEN -->

82 <!-- END: BETWEEN -->

83
84 <!-- END: DATA --> or <!-- END: DATA{iRow} -->

85
86 <!-- BEGIN: FOOTER -->

87 <!-- END: FOOTER -->

88
89 <!-- BEGIN: GROUP_{group}_end -->

90 <!-- BEGIN: _default_ -->

136

A Appendix

91 <!-- END: _default_ -->

92 <!-- BEGIN: {groupvalue} -->

93 <!-- END: {groupvalue} -->

94 <!-- END: GROUP_{group}_end -->

95
96 <!-- End: modul -->

97
98 <!-- BEGIN: modul#footer -->

99 for subblocks see ’modul’ block

100 <!-- END: modul#footer -->

101
102 <!-- END: main -->

A.5 CMS feature comparison

This table has been generated using data from CMS Matrix106, a Web site dedicated to provide information
on both commercial and open source content management systems.

106 http://www.cmsmatrix.org

137

http://www.cmsmatrix.org

A.5 CMS feature comparison
Pr

od
uc

t
A

ria
dn

e
2.

4r
c2

D
ru

pa
l

4.
7.

2
eZ

 p
ub

lis
h

3.
x

Jo
om

la
! 1

.0
.7

M
am

bo
 4

.5
.3

ph
pC

M
S

1.
2.

1p
l2

Pl
on

e
2.

1.
1

Sp
in

Pi
ke

C

om
m

er
ce

3.

3.
5

TY
PO

3
4.

0
Xa

ra
ya

 1
.0

Xo
op

s
2.

06

La
st

 U
pd

at
ed

8/
26

/2
00

4
6/

7/

20
06

5/
10

/2
00

6
4/

25
/2

00
6

1/
28

/2
00

6
8/

31
/2

00
5

12
/

1/
20

05
4/

16
/2

00
4

5/
15

/2
00

6
11

/ 9
/2

00
5

4/
16

/2
00

4

Sy
st

em
 R

eq
ui

re
m

en
ts

A
ria

dn
e

D
ru

pa
l

eZ
 p

ub
lis

h
Jo

om
la

!
M

am
bo

ph
pC

M
S

Pl
on

e
Sp

in
Pi

ke

C
om

m
er

ce
TY

PO
3

Xa
ra

ya
Xo

op
s

A
pp

lic
at

io
n

Se
rv

er
Th

e
ap

pl
ic

at
io

n
se

rv
er

 o
r a

pp
lic

at
io

n
en

vi
ro

nm
en

t
re

qu
ire

d
to

 ru
n

th
is

 C
M

S.

m
od

_p
hp

PH

P

4.
3.

3+

N
on

e

Ap
ac

he

re
co

m
m

en
de

d,

an
y

se
rv

er
 th

at

su
pp

or
ts

 P
H

P

an
d

M
yS

Q
L

PH
P

 4
.1

.2
+

no
t n

ee
de

d
Zo

pe

PH
P

 4
.3

.0
+

N
on

e

A
pp

ro
xi

m
at

e
C

os
t

Th
e

ap
pr

ox
im

at
e

lic
en

si
ng

 c
os

t o
f t

hi
s

C
M

S.
 N

ot
e

th
at

th

er
e

ar
e

al
m

os
t a

lw
ay

s
ha

rd
 a

nd
 s

of
t c

os
ts

 b
ey

on
d

lic
en

si
ng

 c
os

ts
 fo

r a
ny

 C
M

S
.

Fr
ee

$0

Fr

ee

Fr
ee

$7

95

Fr
ee

Fr

ee
 /

G
PL

Fr

ee

D
at

ab
as

e
Th

e
da

ta
ba

se
 e

ng
in

e
th

is
 C

M
S

 u
se

s
to

 s
to

re
 c

on
te

nt

an
d

se
tti

ng
s.

Po
st

gr
eS

Q
L,

M

yS
Q

L,

O
ra

cl
e

M
yS

Q
L,

Po

st
gr

es

M
yS

Q
L,

Po

st
G

re
SQ

L,

O
ra

cl
e,

M

SS
Q

L

M
yS

Q
L

M
yS

Q
L

Fl
at

 fi
le

 (n
o

da
ta

ba
se

ne

ed
ed

)
Zo

pe

M
yS

Q
L

M
yS

Q
L,

Po

st
G

re
SQ

L,

O
ra

cl
e,

M

SS
Q

L

M
yS

Q
L,

M

yS
Q

Li
,

Po
st

gr
eS

Q
L,

SQ

Li
te

M
yS

Q
L

4.
23

.x
x

or

la
te

r

Li
ce

ns
e

Th
e

ty
pe

 o
f l

ic
en

se
 th

is
 C

M
S

 is
 d

is
tri

bu
te

d
un

de
r.

G
N

U
 G

P
L

G
N

U
G

PL

G
N

U
 G

P
L

G
N

U
 G

P
L

G
N

U
 G

P
L

G
N

U
 G

P
L

G
N

U
G

PL

Pr
op

rie
ta

ry

G
N

U
 G

P
L

G
N

U
 G

P
L

G
N

U
 G

P
L

O
pe

ra
tin

g
Sy

st
em

Th
e

op
er

at
in

g
sy

st
em

s
th

is
 C

M
S

 is
 c

om
pa

tib
le

 w
ith

.
W

in
do

w
s,

U

ni
x

An
y

Li
nu

x,

W
in

do
w

s
An

y
An

y
O

S
In

de
pe

nd
en

t
An

y
U

ni
x,

 L
in

ux

An
y

An
y

An
y

Pr
og

ra
m

m
in

g
La

ng
ua

ge
Th

e
pr

og
ra

m
m

in
g

la
ng

ua
ge

 th
at

 th
e

C
M

S
is

 w
rit

te
n

in

an
d/

or
 c

an
 b

e
ex

te
nd

ed
 u

si
ng

.
PH

P

PH
P

PH

P

PH
P

PH

P

PH
P

4
or

PH

P
 5

Py

th
on

PH

P

PH
P

PH

P

PH
P

 4
.1

.0

or
 la

te
r

R
oo

t A
cc

es
s

Is
 ro

ot
 (o

r a
dm

in
is

tra
to

r)
ac

ce
ss

 re
qu

ire
d

to
 in

st
al

l t
hi

s
ap

pl
ic

at
io

n?

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Sh
el

l A
cc

es
s

Is
 s

he
ll

ac
ce

ss
 re

qu
ire

d
to

 in
st

al
l t

hi
s

ap
pl

ic
at

io
n?

 In

ot
he

r w
or

ds
, d

o
yo

u
ne

ed
 to

 b
e

ab
le

 to
 lo

g
in

 to
 th

e
m

ac
hi

ne
 (o

th
er

 th
an

 th
ro

ug
h

FT
P

) i
n

or
de

r t
o

in
st

al
l

th
is

 a
pp

lic
at

io
n?

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

W
eb

 S
er

ve
r

Th
e

w
eb

 s
er

ve
rs

 th
is

 C
M

S
 is

 c
om

pa
tib

le
 w

ith
.

Ap
ac

he
, I

IS

Ap
ac

he
,

IIS

Ap
ac

he

Ap
ac

he

Ap
ac

he
, I

IS
, a

ny

PH
P

 e
na

bl
ed

 w
eb

se

rv
er

, b
ut

Ap

ac
he

R

ec
om

m
en

de
d

An
y

ph
p

en
ab

le
d

se
rv

er

Ap
ac

he
,

IIS
,

Zo
pe

Ap

ac
he

Ap

ac
he

, I
IS

An

y
ph

p
en

ab
le

d
se

rv
er

Ap
ac

he
,

IIS

Se
cu

rit
y

A
ria

dn
e

D
ru

pa
l

eZ
 p

ub
lis

h
Jo

om
la

!
M

am
bo

ph
pC

M
S

Pl
on

e
Sp

in
Pi

ke

C
om

m
er

ce
TY

PO
3

Xa
ra

ya
Xo

op
s

A
ud

it
Tr

ai
l

D
oe

s
th

e
sy

st
em

 k
ee

p
tra

ck
 o

f w
ho

 m
ad

e
ad

di
tio

ns
,

up
da

te
s,

 o
r d

el
et

io
ns

?
Li

m
ite

d
Ye

s
Ye

s
N

o
N

o
N

o
Ye

s
N

o
Ye

s
Fr

ee
 A

dd
 O

n
N

o

C
ap

tc
ha

A
ch

al
le

ng
e-

re
sp

on
se

 s
ys

te
m

 d
es

ig
ne

d
to

 d
ef

ea
t b

ot
s

fro
m

 b
ei

ng
 a

bl
e

to
 u

se
 u

se
r-

on
ly

 fe
at

ur
es

 o
f a

 s
ys

te
m

.

Fr
ee

 A
dd

O

n
Fr

ee
 A

dd
 O

n
Ye

s
N

o
N

o
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n

138

A Appendix

Se
e

ht
tp

://
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/C

ap
tc

ha
 fo

r m
or

e
in

fo
rm

at
io

n.

C
on

te
nt

 A
pp

ro
va

l
D

oe
s

th
e

sy
st

em
 p

ro
vi

de
 fo

r s
om

e
le

ve
l o

f s
ys

te
m

-
w

id
e

co
nt

en
t a

pp
ro

va
l?

Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
N

o
Ye

s
Fr

ee
 A

dd
 O

n
Ye

s

Em
ai

l V
er

ifi
ca

tio
n

D
oe

s
th

e
sy

st
em

 s
en

d
an

 a
ct

iv
at

io
n

ke
y

to
 u

se
rs

 to

m
ak

e
su

re
 th

ey
\'v

e
en

te
re

d
a

va
lid

 e
m

ai
l a

dd
re

ss
?

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Li
m

ite
d

Ye
s

Ye
s

G
ra

nu
la

r P
riv

ile
ge

s
D

oe
s

th
e

sy
st

em
 a

llo
w

 re
ad

 a
nd

 w
rit

e
pr

iv
ile

ge
s

on
 a

pe

r p
ag

e
or

 p
er

 c
on

te
nt

 it
em

 b
as

is
, a

s
w

el
l a

s
se

pa
ra

te
 p

riv
ile

ge
s

fo
r o

th
er

 s
ys

te
m

 fu
nc

tio
ns

?

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

K
er

be
ro

s
A

ut
he

nt
ic

at
io

n
D

oe
s

th
e

sy
st

em
 s

up
po

rt
au

th
en

tic
at

io
n

vi
a

Ke
rb

er
os

?
N

o
N

o
N

o
N

o
N

o
N

o
Fr

ee

Ad
d

O
n

N
o

N
o

N
o

N
o

LD
A

P
A

ut
he

nt
ic

at
io

n
D

oe
s

th
e

sy
st

em
 a

llo
w

 fo
r L

D
A

P
-b

as
ed

au

th
en

tic
at

io
n?

Ye

s
Fr

ee
 A

dd

O
n

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

N
o

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s

Lo
gi

n
H

is
to

ry
D

oe
s

th
e

sy
st

em
 k

ee
p

tra
ck

 o
f w

ho
 lo

gg
ed

 in
 a

nd

w
he

n?
 S

uc
h

sy
st

em
s

al
so

 u
su

al
ly

 k
ee

p
tra

ck
 o

f
th

in
gs

 li
ke

 w
ha

t b
ro

w
se

r t
he

 u
se

r w
as

 u
si

ng
 a

nd
 w

ha
t

IP
 a

dd
re

ss
 th

ey
 c

am
e

fro
m

, a
s

w
el

l a
s

un
su

cc
es

sf
ul

at

te
m

pt
s.

N
o

Ye
s

N
o

Ye
s

Fr
ee

 A
dd

 O
n

N
o

Fr
ee

Ad

d
O

n
Li

m
ite

d
Ye

s
N

o
Fr

ee
 A

dd

O
n

N
IS

 A
ut

he
nt

ic
at

io
n

D
oe

s
th

e
sy

st
em

 s
up

po
rt

au
th

en
tic

at
io

n
vi

a
N

IS
?

N
o

N
o

N
o

N
o

N
o

N
o

Fr
ee

Ad

d
O

n
N

o
N

o
N

o
N

o

N
TL

M
 A

ut
he

nt
ic

at
io

n
D

oe
s

th
e

sy
st

em
 s

up
po

rt
au

th
en

tic
at

io
n

vi
a

N
TL

M
?

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

Pl
ug

ga
bl

e
A

ut
he

nt
ic

at
io

n
D

oe
s

th
e

sy
st

em
 a

llo
w

 a
n

ad
m

in
is

tra
to

r t
o

pl
ug

 in

ad
di

tio
na

l a
ut

he
nt

ic
at

io
n

sc
he

m
es

 (f
ro

m
 a

 v
en

do
r o

r
ho

m
eg

ro
w

n)
 b

ey
on

d
th

e
de

fa
ul

t p
ro

pr
ie

ta
ry

au

th
en

tic
at

io
n

sc
he

m
e

an
d

an
 L

D
AP

 a
ut

he
nt

ic
at

io
n

m
ec

ha
ni

sm
?

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

N
o

Fr
ee

 A
dd

 O
n

Ye
s

N
o

Pr
ob

le
m

 N
ot

ifi
ca

tio
n

D
oe

s
th

e
sy

st
em

 p
ro

vi
de

 a
 m

ec
ha

ni
sm

 fo
r a

le
rti

ng

ad
m

in
is

tra
to

rs
 (e

m
ai

l,
in

st
an

t m
es

se
ng

er
, c

el
l p

ho
ne

,
et

c)
 w

he
n

it
de

te
ct

s
a

pr
ob

le
m

?
(L

og
gi

ng
 d

oe
s

no
t

co
un

t.)

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

Li
m

ite
d

Sa
nd

bo
x

D
oe

s
th

e
sy

st
em

 a
llo

w
 fo

r a
 p

riv
at

e
ar

ea
 fo

r c
on

te
nt

m

an
ag

er
s

to
 tr

y
ne

w
 c

on
te

nt
 id

ea
s

w
ith

ou
t t

he
 w

or
ry

of

 a
ffe

ct
in

g
th

e
re

st
 o

f t
he

 s
ite

?

Li
m

ite
d

N
o

Ye
s

N
o

N
o

N
o

Ye
s

N
o

Ye
s

Fr
ee

 A
dd

 O
n

Li
m

ite
d

Se
ss

io
n

M
an

ag
em

en
t

D
oe

s
th

e
sy

st
em

 p
ro

vi
de

 s
om

e
fa

ci
lit

y
fo

r a
n

ad
m

in
is

tra
to

r t
o

se
e

w
ho

 is
 lo

gg
ed

 in
, w

ha
t t

he
y

ar
e

do
in

g,
 a

nd
 lo

g
th

em
 o

ut
 if

 n
ec

es
sa

ry
?

N
o

Ye
s

Ye
s

Ye
s

Li
m

ite
d

N
o

Fr
ee

Ad

d
O

n
Li

m
ite

d
Ye

s
Ye

s
Li

m
ite

d

SM
B

 A
ut

he
nt

ic
at

io
n

D
oe

s
th

e
sy

st
em

 s
up

po
rt

au
th

en
tic

at
io

n
vi

a
S

M
B?

N

o
N

o
N

o
N

o
N

o
N

o
Fr

ee

Ad
d

O
n

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

139

A.5 CMS feature comparison
SS

L
C

om
pa

tib
le

C
an

 th
is

 s
ys

te
m

 b
e

us
ed

 w
ith

 a
n

SS
L

ce
rti

fic
at

e
on

th

e
w

eb
 s

er
ve

r?

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

SS
L

Lo
gi

ns
C

an
 th

is
 s

ys
te

m
 b

e
co

nf
ig

ur
ed

 to
 s

w
itc

h
to

 S
SL

 m
od

e
(H

TT
P

S)
 fo

r l
og

in
s,

 a
nd

 th
en

 b
ac

k
to

 n
or

m
al

 H
TT

P
af

te
r t

he
 lo

gi
n?

 T
hi

s
ki

nd
 o

f f
un

ct
io

na
lit

y
pr

ot
ec

ts
 u

se
r

lo
gi

n
in

fo
rm

at
io

n
fro

m
 b

ei
ng

 s
ni

ffe
d.

Ye
s

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

SS
L

Pa
ge

s
C

an
 th

is
 s

ys
te

m
 b

e
co

nf
ig

ur
ed

 to
 s

w
itc

h
to

 S
SL

 m
od

e
fo

r c
er

ta
in

 p
ag

es
 (o

r s
ec

tio
ns

),
an

d
th

en
 b

ac
k

to

st
ra

ig
ht

 H
TT

P
 fo

r o
th

er
 p

ag
es

 (o
r s

ec
tio

ns
)?

 Y
ou

 m
ay

w

an
t t

hi
s

if
th

e
sy

st
em

 is
 u

se
d

pa
rti

al
ly

 fo
r r

eg
ul

ar
 s

ite

co
nt

en
t a

nd
 p

ar
tia

lly
 to

 d
is

tri
bu

te
 c

on
fid

en
tia

l d
at

a
su

ch
 a

s
cu

st
om

er
 in

vo
ic

es
 o

r m
ed

ic
al

 re
co

rd
s.

Ye
s

N
o

Ye
s

N
o

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

Ye
s

Ve
rs

io
ni

ng
D

oe
s

th
e

sy
st

em
 p

ro
vi

de
 fo

r s
om

e
le

ve
l o

f s
ys

te
m

-
w

id
e

co
nt

en
t v

er
si

on
in

g?

N
o

Li
m

ite
d

Ye
s

Ye
s

Li
m

ite
d

N
o

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

Su
pp

or
t

A
ria

dn
e

D
ru

pa
l

eZ
 p

ub
lis

h
Jo

om
la

!
M

am
bo

ph
pC

M
S

Pl
on

e
Sp

in
Pi

ke

C
om

m
er

ce
TY

PO
3

Xa
ra

ya
Xo

op
s

C
er

tif
ic

at
io

n
Pr

og
ra

m
Is

 th
er

e
a

pr
of

es
si

on
al

 c
er

tif
ic

at
io

n
or

 d
eg

re
e

pr
og

ra
m

fo

r t
hi

s
C

M
S?

N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
Ye

s

C
od

e
Sk

el
et

on
s

D
oe

s
th

e
sy

st
em

 p
ro

vi
de

 c
od

e
sk

el
et

on
s

or
 c

od
e

te
m

pl
at

es
 to

 m
ak

e
it

ea
sy

 fo
r n

ew
 d

ev
el

op
er

s
to

 w
rit

e
pl

ug
in

s
fo

r i
t?

N
o

Ye
s

N
o

N
o

Fr
ee

 A
dd

 O
n

C
om

m
er

ci
al

 M
an

ua
ls

Ar
e

th
er

e
bo

ok
s

or
 o

th
er

 c
om

m
er

ci
al

ly
 a

va
ila

bl
e

do
cu

m
en

ta
tio

n
fo

r t
hi

s
C

M
S

?
N

o
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
Li

m
ite

d
Ye

s

C
om

m
er

ci
al

 S
up

po
rt

C
an

 s
up

po
rt

be
 p

ur
ch

as
ed

 fr
om

 a
 c

om
m

er
ci

al

or
ga

ni
za

tio
n

w
ith

 tr
ai

ne
d

st
af

f m
em

be
rs

?
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

C
om

m
er

ci
al

 T
ra

in
in

g
C

an
 tr

ai
ni

ng
 b

e
pu

rc
ha

se
d

fro
m

 a
 c

om
m

er
ci

al

or
ga

ni
za

tio
n

th
at

 h
as

 d
ed

ic
at

ed
 tr

ai
ni

ng
 s

ta
ff

fo
r t

hi
s

C
M

S?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

Ye
s

N
o

D
ev

el
op

er
 C

om
m

un
ity

Is
 th

er
e

a
fre

e
on

lin
e

de
ve

lo
pe

r c
om

m
un

ity

sp
ec

ifi
ca

lly
 fo

r t
hi

s
pr

od
uc

t?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

O
nl

in
e

H
el

p
Is

 th
er

e
an

 in
te

gr
at

ed
 c

on
te

xt
-s

en
si

tiv
e

he
lp

 s
ys

te
m

bu

ilt
 in

 to
 th

e
C

M
S

?
Li

m
ite

d
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
N

o
Ye

s

Pl
ug

ga
bl

e
A

PI
C

an
 th

e
sy

st
em

 b
e

ex
te

nd
ed

 th
ro

ug
h

an
 o

pe
n

an
d

do
cu

m
en

te
d

ap
pl

ic
at

io
n

pr
og

ra
m

m
in

g
in

te
rfa

ce

(A
PI

)?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Pr
of

es
si

on
al

 H
os

tin
g

Is
 th

er
e

a
ve

nd
or

 s
up

pl
ie

d
pr

of
es

si
on

al
ly

 tu
ne

d

140

A Appendix

ho
st

in
g

en
vi

ro
nm

en
t (

ap
pl

ic
at

io
n

se
rv

ic
e

pr
ov

id
er

) o
r

ha
s

a
ce

rti
fie

d
ho

st
in

g
pa

rtn
er

 p
ro

gr
am

.
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
C

os
ts

 E
xt

ra

Ye
s

Ye
s

Ye
s

Pr
of

es
si

on
al

 S
er

vi
ce

s
Ar

e
th

er
e

co
m

m
er

ci
al

ly
 a

va
ila

bl
e

pr
of

es
si

on
al

se

rv
ic

es
 o

rg
an

iz
at

io
ns

 to
 c

us
to

m
iz

e
or

 p
ro

vi
de

ad

m
in

is
tra

tiv
e

se
rv

ic
es

 fo
r t

hi
s

C
M

S?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

O

n
Ye

s
Ye

s
Ye

s

Pu
bl

ic
 F

or
um

Is
 th

er
e

a
pu

bl
ic

ly
 a

va
ila

bl
e

fo
ru

m
 o

r m
es

sa
ge

 b
oa

rd

fo
r t

he
 s

ys
te

m
?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Pu
bl

ic
 M

ai
lin

g
Li

st
Is

 th
er

e
a

pu
bl

ic
ly

 a
va

ila
bl

e
m

ai
lin

g
lis

t f
or

 th
e

sy
st

em
?

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Te
st

 F
ra

m
ew

or
k

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
ut

om
at

ed
 te

st
 fr

am
ew

or
k

th
at

 c
an

 b
e

us
ed

 to
 te

st
 th

e
co

de
ba

se
 to

 e
ns

ur
e

th
at

it

is
 fu

nc
tio

ni
ng

 p
ro

pe
rly

?
Th

is
 s

or
t o

f f
ra

m
ew

or
k

is

so
m

et
im

es
 c

al
le

d
U

ni
t T

es
ts

 o
r S

m
ok

e
Te

st
s.

Fr
ee

 A
dd

O

n
N

o
N

o
N

o
Fr

ee
 A

dd
 O

n

Th
ird

-P
ar

ty
 D

ev
el

op
er

s
Ar

e
th

er
e

th
ird

-p
ar

ty
 d

ev
el

op
er

s
w

ho
 m

an
uf

ac
tu

re

pl
ug

-in
s

fo
r t

hi
s

sy
st

em
?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

U
se

rs
 C

on
fe

re
nc

e
Is

 th
er

e
an

 a
nn

ua
l u

se
rs

 c
on

fe
re

nc
e

fo
r t

hi
s

sy
st

em

w
he

re
 it

's
 u

se
rs

 c
an

 g
et

 to
ge

th
er

, d
is

cu
ss

 id
ea

s,
 g

et

tra
in

in
g,

 e
tc

?

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

Ea
se

 o
f U

se
A

ria
dn

e
D

ru
pa

l
eZ

 p
ub

lis
h

Jo
om

la
!

M
am

bo
ph

pC
M

S
Pl

on
e

Sp
in

Pi
ke

C

om
m

er
ce

TY
PO

3
Xa

ra
ya

Xo
op

s

D
ra

g-
N

-D
ro

p
C

on
te

nt
D

oe
s

th
e

pr
od

uc
t a

llo
w

 th
e

us
er

 to
 p

os
iti

on
 c

on
te

nt
 in

a

dr
ag

 a
nd

 d
ro

p
fa

sh
io

n?

N
o

N
o

N
o

N
o

N
o

N
o

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
N

o
N

o

Em
ai

l T
o

D
is

cu
ss

io
n

C
an

 m
es

sa
ge

s
be

 e
m

ai
le

d
to

 th
e

sy
st

em
 s

o
th

at
 th

ey

au
to

m
at

ic
al

ly
 a

pp
ea

r i
n

co
m

m
un

ity
 d

is
cu

ss
io

ns

(fo
ru

m
s/

m
es

sa
ge

 b
oa

rd
s)

?

N
o

Fr
ee

 A
dd

O

n
N

o
Fr

ee
 A

dd
 O

n
N

o
N

o
Fr

ee

Ad
d

O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

N
o

Fr
ie

nd
ly

 U
R

Ls
D

oe
s

th
e

sy
st

em
 h

av
e

hu
m

an
-re

ad
ab

le
 a

nd
 s

ea
rc

h
en

gi
ne

 fr
ie

nd
ly

 U
R

Ls
?

(T
he

 a
lte

rn
at

iv
e

is
 th

at
 th

er
e

ar
e

a
bu

nc
h

of
 s

ym
bo

ls
 a

nd
 n

um
be

rs
 in

 th
e

U
R

L
an

d
th

e
U

R
Ls

 a
re

 ty
pi

ca
lly

 q
ui

te
 lo

ng
.)

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

O

n

Im
ag

e
R

es
iz

in
g

Is
 th

e
sy

st
em

 c
ap

ab
le

 o
f a

llo
w

in
g

us
er

s
to

 re
si

ze

up
lo

ad
ed

 im
ag

es
 s

o
th

ey
 n

ee
d

no
t m

es
s

ar
ou

nd
 w

ith

an
 e

xt
er

na
l i

m
ag

e
ed

ito
r?

Fr
ee

 A
dd

O

n
Ye

s
Ye

s
N

o
N

o
Fr

ee

Ad
d

O
n

Ye
s

N
o

M
ac

ro
 L

an
gu

ag
e

Is
 th

er
e

a
m

ac
ro

 la
ng

ua
ge

 th
at

 a
llo

w
s

co
nt

en
t

m
an

ag
er

s
to

 p
la

ce
 p

ow
er

fu
l f

un
ct

io
na

lit
y

(li
ke

 a
ut

o-
ge

ne
ra

te
d

na
vi

ga
tio

n
sy

st
em

s)
 w

ith
ou

t a
ny

pr

og
ra

m
m

in
g

kn
ow

le
dg

e?

N
o

Fr
ee

 A
dd

O

n
Ye

s
Ye

s
Ye

s
N

o
Ye

s
N

o
Ye

s
Ye

s
Li

m
ite

d

M
as

s
U

pl
oa

d
D

oe
s

th
e

sy
st

em
 h

av
e

a
w

ay
 o

f u
pl

oa
di

ng
/im

po
rti

ng

Fr
ee

 A
dd

Fr

ee
 A

dd
 O

n
N

o
N

o
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n

141

A.5 CMS feature comparison
m

an
y

im
ag

es
 a

nd
 o

th
er

 fi
le

s
al

l a
t o

nc
e

to
 s

av
e

tim
e?

O

n

Pr
ot

ot
yp

in
g

D
oe

s
th

e
sy

st
em

 a
llo

w
 th

e
us

er
 to

 c
re

at
e

cu
st

om

de
fa

ul
t s

et
tin

gs
 fo

r t
he

 d
iff

er
en

t k
in

ds
 o

f c
on

te
nt

ob

je
ct

s
to

 s
av

e
th

em
 e

xt
ra

 c
lic

ks
 w

he
n

cr
ea

tin
g

th
os

e
ob

je
ct

 ty
pe

s.
 F

or
 in

st
an

ce
, i

f t
he

re
 is

 a
 p

ar
tic

ul
ar

te

m
pl

at
e

th
ey

 li
ke

 to
 u

se
, c

an
 th

ey
 s

et
 it

 a
s

a
de

fa
ul

t?

N
o

Ye
s

Ye
s

N
o

Ye
s

N
o

Fr
ee

 A
dd

 O
n

Ye
s

Se
rv

er
 P

ag
e

La
ng

ua
ge

Is
 th

er
e

a
se

rv
er

 p
ag

e
la

ng
ua

ge
 a

va
ila

bl
e

lik
e

P
H

P
,

JS
P

, o
r A

SP
 fo

r e
as

y
on

e-
of

f f
un

ct
io

na
lit

y?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Sp
el

l C
he

ck
er

D
oe

s
th

e
sy

st
em

 h
av

e
an

 in
te

gr
at

ed
 s

pe
ll

ch
ec

ke
r?

Fr

ee
 A

dd

O
n

N
o

N
o

N
o

N
o

Fr
ee

Ad

d
O

n
Ye

s
Fr

ee
 A

dd
 O

n

St
yl

e
W

iz
ar

d
D

oe
s

th
e

sy
st

em
 h

av
e

a
w

iz
ar

d
fo

r g
en

er
at

in
g

st
yl

es
/th

em
es

/te
m

pl
at

es
 o

r w
ha

te
ve

r e
ls

e
a

lo
ok

 a
nd

fe

el
 m

ig
ht

 b
e

ca
lle

d
in

 th
e

sy
st

em
?

Th
es

e
w

iz
ar

ds

w
ou

ld
 a

llo
w

 th
e

us
er

 to
 s

te
p

by
 s

te
p

ch
oo

se
 c

ol
or

s,

la
yo

ut
s,

 lo
go

s,
 e

tc
 to

 c
re

at
e

th
ei

r o
w

n
lo

ok
 a

nd
 fe

el

w
ith

ou
t k

no
w

in
g

an
yt

hi
ng

 a
bo

ut
 H

TM
L/

C
SS

.

N
o

N
o

N
o

N
o

Ye
s

Su
bs

cr
ip

tio
ns

C
an

 th
e

us
er

 s
ub

sc
rib

e
to

 v
ar

io
us

 s
ec

tio
ns

 o
f t

he
 s

ite

an
d

re
ce

iv
e

no
tif

ic
at

io
ns

 o
n

ne
w

/u
pd

at
ed

 c
on

te
nt

?
Th

es
e

ty
pe

s
of

 fu
nc

tio
ns

 a
re

 ty
pi

ca
lly

 fo
un

d
in

 th
e

ne
w

s
fe

ed
s,

 fo
ru

m
s,

 a
nd

 b
lo

gs
.

Fr
ee

 A
dd

O

n
Ye

s
N

o
N

o
N

o
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n

Te
m

pl
at

e
La

ng
ua

ge
Is

 th
er

e
a

te
m

pl
at

in
g

la
ng

ua
ge

 fo
r p

ow
er

fu
l l

ay
ou

t
co

nt
ro

ls
?

(N
ot

e
th

at
 te

m
pl

at
in

g
la

ng
ua

ge
s

ar
e

di
ffe

re
nt

 fr
om

 s
er

ve
r p

ag
e

la
ng

ua
ge

s
in

 th
at

 th
ey

 a
re

no

t c
ap

ab
le

 o
f f

ul
l p

ro
gr

am
m

at
ic

 fu
nc

tio
ns

, a
nd

 a
re

fu

lly
 H

TM
L

co
m

pl
ia

nt
.)

N
o

Li
m

ite
d

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

U
I L

ev
el

s
Is

 th
er

e
a

m
ea

ns
 o

f "
du

m
bi

ng
 d

ow
n"

 th
e

pu
bl

is
hi

ng

in
te

rfa
ce

 fo
r l

es
s

so
ph

is
tic

at
ed

 p
ub

lis
he

rs
 w

hi
le

ke

ep
in

g
a

m
or

e
so

ph
is

tic
at

ed
 in

te
rfa

ce
 fo

r p
ow

er

us
er

s?

Ye
s

N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

Ye
s

Ye
s

U
nd

o
D

oe
s

th
e

sy
st

em
 a

llo
w

 u
se

rs
 to

 "u
nd

o"
 o

pe
ra

tio
ns

 if

th
ey

 m
ak

e
a

m
is

ta
ke

?
N

o
Li

m
ite

d
Ye

s
N

o
Ye

s
N

o
Ye

s
N

o
Ye

s
Fr

ee
 A

dd
 O

n
N

o

W
YS

IW
YG

 E
di

to
r

Is
 th

er
e

a
w

eb
-b

as
ed

 ri
ch

 te
xt

 e
di

to
r t

o
al

lo
w

pu

bl
is

he
rs

 to
 c

re
at

e
fo

rm
at

te
d

co
nt

en
t w

ith
ou

t
kn

ow
in

g
H

TM
L,

 C
SS

, X
M

L,
 o

r X
SL

?

Ye
s

Fr
ee

 A
dd

O

n
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

Zi
p

A
rc

hi
ve

s
D

oe
s

th
e

sy
st

em
 a

llo
w

 a
 u

se
r t

o
up

lo
ad

 a
 z

ip
 (o

r
ot

he
r c

om
pr

es
se

d
fil

e)
 fu

ll
of

 s
ta

tic
 c

on
te

nt
, w

hi
ch

 is

th
en

 p
ub

lis
he

d
to

 th
e

si
te

?
Th

is
 s

or
t o

f f
ea

tu
re

 is
 u

se
d

to
 d

o
w

eb
-b

as
ed

 m
as

s
up

lo
ad

s
of

 s
ta

tic
 c

on
te

nt
.

N
o

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

Pe
rf

or
m

an
ce

A
ria

dn
e

D
ru

pa
l

eZ
 p

ub
lis

h
Jo

om
la

!
M

am
bo

ph
pC

M
S

Pl
on

e
Sp

in
Pi

ke

C
om

m
er

ce
TY

PO
3

Xa
ra

ya
Xo

op
s

142

A Appendix

A
dv

an
ce

d
C

ac
hi

ng
D

oe
s

th
e

sy
st

em
 h

av
e

ad
va

nc
ed

 c
ac

hi
ng

m

ec
ha

ni
sm

s
th

at
 g

o
be

yo
nd

 s
im

pl
e

pa
ge

 c
ac

hi
ng

?
Fo

r i
ns

ta
nc

e,
 n

av
ig

at
io

n,
 te

m
pl

at
e,

 o
r c

on
te

nt
 o

bj
ec

t
ca

ch
in

g?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

D
at

ab
as

e
R

ep
lic

at
io

n
C

an
 th

e
sy

st
em

 ta
ke

 a
dv

an
ta

ge
 o

f d
at

ab
as

e
re

pl
ic

at
io

n
fo

r b
et

te
r s

ca
la

bi
lit

y?
 T

he
 s

ys
te

m
 w

ou
ld

ne

ed
 to

 b
e

ab
le

 to
 p

er
fo

rm
 re

ad
s

fro
m

 s
la

ve
s

an
d

w
rit

es
 to

 th
e

da
ta

ba
se

 m
as

te
r.

N
o

N
o

Ye
s

N
o

N
o

N
o

C
os

ts

Ex
tra

N

o
N

o

Lo
ad

 B
al

an
ci

ng
D

oe
s

th
e

sy
st

em
 a

llo
w

 y
ou

 to
 p

ut
 a

 lo
ad

 b
al

an
ce

r i
n

fro
nt

 o
f i

t t
o

sp
lit

 th
e

lo
ad

 b
et

w
ee

n
m

ul
tip

le
 s

er
ve

rs
?

Th
is

 w
ou

ld
 re

qu
ire

 th
at

 u
se

r s
es

si
on

s
ca

n
be

 p
as

se
d

be
w

ee
n

al
l t

he
 n

od
es

 tr
an

sp
ar

en
tly

.

Ye
s

N
o

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

Ye
s

Ye
s

Pa
ge

 C
ac

hi
ng

D
oe

s
th

e
sy

st
em

 h
av

e
a

m
ec

ha
ni

sm
 fo

r c
ac

hi
ng

 th
e

co
nt

en
ts

 o
f a

 p
ag

e
so

 th
at

 if
 it

\'s
 re

qu
es

te
d

ag
ai

n
it

ca
n

sk
ip

 m
os

t o
f t

he
 w

or
k

to
 c

re
at

e
th

e
pa

ge
?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

St
at

ic
 C

on
te

nt
 E

xp
or

t
D

oe
s

th
e

sy
st

em
 h

av
e

th
e

ab
ilit

y
to

 e
xp

or
t i

t\'
s

co
nt

en
t a

s
st

at
ic

 H
TM

L
so

 it
 m

ay
 b

e
se

rv
ed

 u
p

fro
m

re

gi
on

al
 c

ac
he

 s
er

ve
rs

, o
r f

ro
m

 s
ta

tic
 H

TM
L

w
eb

se

rv
er

s?

N
o

Ye
s

N
o

N
o

Ye
s

Fr
ee

Ad

d
O

n
Fr

ee
 A

dd
 O

n
N

o

M
an

ag
em

en
t

A
ria

dn
e

D
ru

pa
l

eZ
 p

ub
lis

h
Jo

om
la

!
M

am
bo

ph
pC

M
S

Pl
on

e
Sp

in
Pi

ke

C
om

m
er

ce
TY

PO
3

Xa
ra

ya
Xo

op
s

A
dv

er
tis

in
g

M
an

ag
em

en
t

D
oe

s
th

e
C

M
S

ha
ve

 a
 b

an
ne

r o
r o

th
er

 m
an

ag
em

en
t

sy
st

em
?

N
o

Fr
ee

 A
dd

O

n
Fr

ee
 A

dd
 O

n
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Ye
s

A
ss

et
 M

an
ag

em
en

t
Is

 th
er

e
a

ce
nt

ra
l r

ep
os

ito
ry

 fo
r u

pl
oa

di
ng

 im
ag

es
 a

nd

ot
he

r f
ile

s
so

 th
ey

 c
an

 b
e

re
us

ed
 th

ro
ug

h-
ou

t t
he

si

te
?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

C
lip

bo
ar

d
Is

 th
er

e
a

cl
ip

bo
ar

d
sy

st
em

 th
at

 a
llo

w
s

pu
bl

is
he

rs
 to

ea

si
ly

 c
ut

 a
nd

 p
as

te
 c

on
te

nt
 fr

om
 o

ne
 a

re
a

of
 th

e
si

te

to
 a

no
th

er
?

N
o

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

C
on

te
nt

 S
ch

ed
ul

in
g

D
oe

s
th

e
sy

st
em

 a
llo

w
 fo

r c
on

te
nt

 to
 b

e
au

to
m

at
ic

al
ly

ad

de
d

or
 re

m
ov

ed
 fr

om
 a

 s
ite

 b
as

ed
 u

po
n

da
te

?
Ye

s
Fr

ee
 A

dd

O
n

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

N
o

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

C
on

te
nt

 S
ta

gi
ng

C
an

 c
on

te
nt

 b
e

cr
ea

te
d

on
 o

ne
 s

er
ve

r a
nd

 e
as

ily

"p
us

he
d"

 to
 a

no
th

er
 s

er
ve

r?

C
os

ts
 E

xt
ra

N

o
Ye

s
N

o
N

o
Ye

s
Fr

ee

Ad
d

O
n

N
o

Fr
ee

 A
dd

 O
n

Ye
s

Li
m

ite
d

In
lin

e
A

dm
in

is
tr

at
io

n
Is

 c
on

te
nt

 e
di

te
d

di
re

ct
ly

 in
 th

e
pa

ge
 th

at
 it

 w
ill

be

pl
ac

ed
?

(T
he

 a
lte

rn
at

iv
e

is
 th

at
 th

er
e

is
 a

 w
ho

lly

se
pa

ra
te

 in
te

rfa
ce

 fo
r m

an
ag

in
g

co
nt

en
t.)

Li
m

ite
d

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

O
nl

in
e

A
dm

in
is

tr
at

io
n

C
an

 th
e

sy
st

em
 b

e
co

m
pl

et
el

y
m

an
ag

ed
 th

ro
ug

h
a

143

A.5 CMS feature comparison
w

eb
 b

ro
w

se
r?

 (T
he

 a
lte

rn
at

iv
e

is
 th

at
 th

er
e

is
 s

om
e

so
rt

of
 o

ffl
in

e
cl

ie
nt

 s
of

tw
ar

e
th

at
 m

us
t b

e
us

ed
 to

m

an
ag

e
at

 le
as

t s
om

e
co

m
po

ne
nt

s.
)

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Pa
ck

ag
e

D
ep

lo
ym

en
t

C
an

 c
on

te
nt

 a
nd

 a
pp

lic
at

io
ns

 b
e

pa
ck

ag
ed

 s
o

th
at

te

di
ou

s
re

pe
di

tiv
e

pu
bl

is
hi

ng
 fu

nc
tio

ns
 c

an
 b

e
ea

si
ly

de

pl
oy

ed
 ti

m
e

an
d

tim
e

ag
ai

n
w

ith
ou

t t
he

 re
pe

tit
io

n?

Ye
s

N
o

Ye
s

N
o

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Su
b-

si
te

s
/ R

oo
ts

D
oe

s
th

e
sy

st
em

 a
llo

w
 fo

r s
ub

-s
ite

s
w

ith
in

 a
 s

ite
 th

at

ar
e

se
lf-

co
nt

ai
ne

d
w

ith
 th

ei
r o

w
n

na
vi

ga
tio

n
an

d
co

nt
en

t h
ie

ra
rc

hy
?

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

O

n

Th
em

es
 /

Sk
in

s
D

oe
s

th
e

sy
st

em
 h

av
e

a
m

ec
ha

ni
sm

 to
 tr

an
sp

or
t

st
yl

es
, t

em
pl

at
es

, e
tc

 b
et

w
ee

n
si

te
s

so
 th

at
 y

ou
 c

an

cr
ea

te
 a

 th
em

e
on

 o
ne

 s
ite

 a
nd

 th
en

 re
us

e
it

on
 m

an
y

ot
he

rs
?

Li
m

ite
d

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Tr
as

h
Is

 th
er

e
a

tra
sh

 s
ys

te
m

 to
 a

llo
w

 a
dm

in
is

tra
to

rs
 o

r
pu

bl
is

he
rs

 to
 re

co
ve

r c
on

te
nt

 th
at

 h
as

 b
ee

n
re

m
ov

ed

fro
m

 th
e

si
te

?
N

ot
e

th
at

 th
is

 is
 n

ot
 th

e
sa

m
e

as

re
co

ve
rin

g
ite

m
s

fro
m

 a
 v

er
si

on
in

g
ar

ch
iv

e.

N
o

N
o

Ye
s

Ye
s

Ye
s

N
o

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
N

o

W
eb

 S
ta

tis
tic

s
D

oe
s

th
e

sy
st

em
 h

av
e

bu
ilt

 in
 w

eb
 s

ite
 s

ta
tis

tic
s

re
po

rti
ng

 fo
r t

hi
ng

s
su

ch
 a

s
pa

ge
s/

co
nt

en
t i

te
m

s
vi

ew
ed

, n
um

be
r o

f u
se

rs
 p

er
 ti

m
e

pe
rio

d,
 e

tc
?

N
o

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

Ye
s

Ye
s

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

W
eb

-b
as

ed
 S

ty
le

/T
em

pl
at

e
M

an
ag

em
en

t
Is

 th
er

e
a

w
eb

-b
as

ed
 in

te
rfa

ce
 fo

r a
dd

in
g

st
yl

es
 a

nd

te
m

pl
at

es
 to

 th
e

sy
st

em
 fo

r d
es

ig
n

an
d

la
yo

ut

co
nt

ro
l?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

W
eb

-b
as

ed
 T

ra
ns

la
tio

n
M

an
ag

em
en

t
C

an
 la

ng
ua

ge
 tr

an
sl

at
io

ns
 b

e
m

an
ag

ed
 th

ro
ug

h
an

d
ea

sy
 w

eb
-b

as
ed

 in
te

rfa
ce

?
N

o
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Ye

s
N

o
Fr

ee

Ad
d

O
n

N
o

Ye
s

Ye
s

Ye
s

W
or

kf
lo

w
 E

ng
in

e
Is

 th
er

e
a

fu
ll-

fle
dg

ed
 w

or
kf

lo
w

 s
ys

te
m

 in
te

gr
at

ed
 in

to

th
e

C
M

S
 th

at
 c

an
 b

e
us

ed
 fo

r b
us

in
es

s
pr

oc
es

s
m

an
ag

em
en

t (
or

 o
th

er
 d

ut
ie

s
be

yo
nd

 ju
st

 c
on

te
nt

ap

pr
ov

al
)?

Li
m

ite
d

Li
m

ite
d

Ye
s

N
o

N
o

N
o

Ye
s

N
o

Li
m

ite
d

Fr
ee

 A
dd

 O
n

N
o

In
te

ro
pe

ra
bi

lit
y

A
ria

dn
e

D
ru

pa
l

eZ
 p

ub
lis

h
Jo

om
la

!
M

am
bo

ph
pC

M
S

Pl
on

e
Sp

in
Pi

ke

C
om

m
er

ce
TY

PO
3

Xa
ra

ya
Xo

op
s

C
on

te
nt

 S
yn

di
ca

tio
n

(R
SS

)
C

an
 th

e
sy

st
em

 e
xp

or
t R

S
S/

XM
L

fe
ed

s
so

 th
at

 th
e

co
nt

en
t c

an
 b

e
re

pu
bl

is
he

d
on

 o
th

er
 s

ite
s?

 N
ot

e
th

at

if
it

ca
n

on
ly

 s
yn

di
ca

te
 c

on
te

nt
 fr

om
 o

ne
 fu

nc
tio

n,

su
ch

 a
 "n

ew
s"

 th
en

 it
 s

ho
ul

d
be

 la
be

le
d

as
 o

nl
y

lim
ite

d
su

pp
or

t.

Li
m

ite
d

Ye
s

Ye
s

Ye
s

Ye
s

Li
m

ite
d

Ye
s

N
o

Ye
s

Ye
s

Ye
s

FT
P

Su
pp

or
t

D
oe

s
th

e
sy

st
em

 a
llo

w
 u

se
rs

 to
 u

pl
oa

d
in

te
rn

al

co
nt

en
t a

nd
/o

r f
ile

s
vi

a
FT

P?

Ye
s

Li
m

ite
d

N
o

Fr
ee

 A
dd

 O
n

N
o

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

U
TF

-8
 S

up
po

rt

144

A Appendix

D
oe

s
th

e
sy

st
em

 s
up

po
rt

U
TF

-8
 c

ha
ra

ct
er

 e
nc

od
in

g
to

 e
na

bl
e

m
ul

ti-
lin

gu
al

 s
ite

s
w

ith
ou

t t
he

 u
se

 o
f

se
pe

ra
te

 c
od

e
pa

ge
s

fo
r e

ac
h

la
ng

ua
ge

?
Ye

s
Ye

s
Ye

s
Li

m
ite

d
N

o
Ye

s
Ye

s
Ye

s
Ye

s

W
A

I C
om

pl
ia

nt
D

oe
s

th
e

sy
st

em
 fo

llo
w

 th
e

W
3C

 s
pe

ci
fic

at
io

n
fo

r W
A

I
co

m
pl

ia
nc

e?

N
o

Li
m

ite
d

Ye
s

N
o

Li
m

ite
d

Ye
s

Ye
s

N
o

Fr
ee

 A
dd

 O
n

Li
m

ite
d

N
o

W
eb

D
A

V
Su

pp
or

t
D

oe
s

th
e

sy
st

em
 a

llo
w

 u
se

rs
 to

 u
pl

oa
d

in
te

rn
al

co

nt
en

t a
nd

/o
r f

ile
s

vi
a

W
eb

D
A

V?

N
o

N
o

Ye
s

N
o

N
o

Li
m

ite
d

Ye
s

N
o

N
o

Ye
s

N
o

XH
TM

L
C

om
pl

ia
nt

D
oe

s
th

e
sy

st
em

 fo
llo

w
 th

e
W

3C
 s

pe
ci

fic
at

io
n

fo
r

XH
TM

L
co

m
pl

ia
nc

e?

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

Fl
ex

ib
ili

ty
A

ria
dn

e
D

ru
pa

l
eZ

 p
ub

lis
h

Jo
om

la
!

M
am

bo
ph

pC
M

S
Pl

on
e

Sp
in

Pi
ke

C

om
m

er
ce

TY
PO

3
Xa

ra
ya

Xo
op

s

C
G

I-m
od

e
Su

pp
or

t
C

an
 th

e
sy

st
em

 ru
n

in
 C

G
I m

od
e

fo
r d

ev
el

op
m

en
t

pu
rp

os
es

 o
r o

n
lo

w
-e

nd
 s

ys
te

m
s?

N

o
Ye

s
N

o
N

o
N

o
Ye

s
Fr

ee

Ad
d

O
n

N
o

Ye
s

Ye
s

N
o

C
on

te
nt

 R
eu

se
D

oe
s

th
e

sy
st

em
 a

llo
w

 c
on

te
nt

 to
 b

e
m

irr
or

ed
 (n

ot

co
pi

ed
, b

ut
 re

us
ed

) f
ro

m
 o

ne
 lo

ca
tio

n
to

 a
no

th
er

 o
n

a
si

te
?

Ye
s

Li
m

ite
d

Ye
s

Ye
s

Li
m

ite
d

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Fr
ee

 A
dd

O

n

Ex
te

ns
ib

le
 U

se
r P

ro
fil

es
D

oe
s

th
e

sy
st

em
 p

ro
vi

de
 a

 u
se

r p
ro

fil
in

g
th

at
 c

an
 b

e
ex

te
nd

ed
 w

ith
 n

ew
 p

ro
fil

e
pr

op
er

tie
s

th
ro

ug
h

an

ad
m

in
is

tra
tiv

e
in

te
rfa

ce
?

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

N
o

Ye
s

N
o

Fr
ee

 A
dd

 O
n

Ye
s

N
o

In
te

rf
ac

e
Lo

ca
liz

at
io

n
Is

 th
e

sy
st

em
 lo

ca
liz

ed
/in

te
rn

at
io

na
liz

ed
 s

o
it

ca
n

be

tra
ns

la
te

d
in

to
 o

th
er

 la
ng

ua
ge

s
an

d
ta

ke
 lo

ca
le

pr

ef
er

en
ce

s
lik

e
da

te
/ti

m
e

pr
ef

er
en

ce
s

in
to

 a
cc

ou
nt

?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

M
et

ad
at

a
D

oe
s

th
e

sy
st

em
 s

up
po

rt
th

e
ad

di
ng

 o
f a

rb
itr

ar
y

m
et

ad
at

a
pr

op
er

tie
s

to
 a

ll
th

e
co

nt
en

t o
bj

ec
ts

?
Th

e
m

et
ad

at
a

is
 ty

pi
ca

lly
 th

en
 u

se
d

fo
r p

ro
fil

in
g,

 in
de

xi
ng

,
or

 e
ve

n
au

xi
lla

ry
 d

is
pl

ay
 fu

nc
tio

ns
.

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

M
ul

ti-
lin

gu
al

 C
on

te
nt

D
oe

s
th

e
sy

st
em

 s
up

po
rt

th
e

cr
ea

tio
n

of
 s

ite
s

w
ith

m

ul
tip

le
 la

ng
ua

ge
s?

Ye

s
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

Ye
s

Ye
s

M
ul

ti-
lin

gu
al

 C
on

te
nt

 In
te

gr
at

io
n

D
oe

s
th

e
sy

st
em

 s
up

po
rt

a
m

ul
ti-

lin
gu

al
 v

er
si

on
 o

f
ea

ch
 c

on
te

nt
 o

bj
ec

t w
ith

ou
t r

ep
ub

lis
hi

ng
 th

e
co

nt
en

t
ob

je
ct

. F
or

 e
xa

m
pl

e,
 if

 y
ou

 c
re

at
e

an
 F

A
Q

 in
 E

ng
lis

h,

th
en

 a
ll

th
at

 n
ee

ds
 to

 b
e

do
ne

 to
 d

is
pl

ay
 th

e
FA

Q
 in

Sp

an
is

h
or

 a
no

th
er

 la
ng

ua
ge

 is
 to

 tr
an

sl
at

e
th

e
co

nt
en

t,
no

t c
re

at
e

an
ot

he
r p

ag
e

w
ith

 a
no

th
er

 F
AQ

co

nt
en

t o
bj

ec
t.

Th
en

 d
ep

en
di

ng
 u

po
n

us
er

pr

ef
er

en
ce

s
it

ei
th

er
 s

ho
w

s
on

e
ve

rs
io

n
or

 th
e

ot
he

r.

Ye
s

Fr
ee

 A
dd

O

n
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

Ye
s

Ye
s

M
ul

ti-
Si

te
 D

ep
lo

ym
en

t
Is

 th
e

sy
st

em
 c

ap
ab

le
 o

f h
os

tin
g

m
ul

tip
le

 s
ite

s
fro

m

on
e

so
ftw

ar
e

de
pl

oy
m

en
t?

 T
hi

s
m

ea
ns

 y
ou

 c
an

 in
st

al
l

145

A.5 CMS feature comparison
th

e
so

ftw
ar

e
on

ce
 a

nd
 h

os
t a

s
m

an
y

si
te

s
as

 y
ou

w

an
t.

It
al

so
 m

ea
ns

 th
at

 w
he

n
it

co
m

es
 ti

m
e

to

up
gr

ad
e

yo
u

on
ly

 n
ee

d
to

 u
pg

ra
de

 th
e

so
ftw

ar
e

in

on
e

pl
ac

e,
 n

ot
 fo

r e
ac

h
se

pe
ra

te
 s

ite
.

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Ye
s

Ye
s

Ye
s

Ye
s

U
R

L
R

ew
rit

in
g

Is
 th

e
sy

st
em

 c
ap

ab
le

 o
f r

ew
rit

in
g

U
R

L
or

 w
or

ki
ng

w

ith
 s

om
e

ot
he

r U
R

L
re

w
rit

in
g

m
ec

ha
ni

sm
 to

 p
ro

vi
de

sh

or
te

r o
r f

rie
nd

lie
r U

R
Ls

?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

W
ik

i A
w

ar
e

D
oe

s
th

e
sy

st
em

 s
up

po
rt

w
ik

i o
r w

ik
i-l

ik
e

fu
nc

tio
na

lit
y?

 W
ik

i p
ro

vi
de

s
on

lin
e

co
lla

bo
ra

tio
n

fu
nc

tio
na

lit
y

as
 w

el
l a

s
a

si
m

pl
e

te
xt

 fo
rm

at
tin

g
la

ng
ua

ge
.

N
o

Fr
ee

 A
dd

O

n
Ye

s
Fr

ee
 A

dd
 O

n
Li

m
ite

d
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

Fr
ee

 A
dd

 O
n

Li
m

ite
d

B
ui

lt-
in

 A
pp

lic
at

io
ns

A
ria

dn
e

D
ru

pa
l

eZ
 p

ub
lis

h
Jo

om
la

!
M

am
bo

ph
pC

M
S

Pl
on

e
Sp

in
Pi

ke

C
om

m
er

ce
TY

PO
3

Xa
ra

ya
Xo

op
s

B
lo

g
D

oe
s

th
e

sy
st

em
m

 h
av

e
a

bl
og

 o
r w

eb
 lo

g?
 (S

ee

sl
as

hd
ot

.o
rg

 fo
r a

n
ex

am
pl

e.
)

Fr
ee

 A
dd

 O
n

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

O

n

C
ha

t
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r r
ea

l-t
im

e
on

lin
e

ch
at

?
N

o
Fr

ee
 A

dd

O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

C
la

ss
ifi

ed
s

D
oe

s
th

e
sy

st
em

 h
av

e
a

cl
as

si
fie

ds
 a

pp
lic

at
io

n?

N
o

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

N
o

N
o

Fr
ee

 A
dd

 O
n

N
o

Fr
ee

 A
dd

O

n

C
on

ta
ct

 M
an

ag
em

en
t

D
oe

s
th

e
sy

st
em

 h
av

e
a

co
nt

ac
t m

an
ag

em
en

t o
r

ro
lo

de
x

ty
pe

 o
f a

pp
lic

at
io

n?

Ye
s

Fr
ee

 A
dd

O

n
Ye

s
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Li
m

ite
d

D
at

a
En

tr
y

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

fo
r c

re
at

in
g

ar
bi

tra
ry

 d
at

a
en

try
 a

pp
lic

at
io

ns
?

N
o

Fr
ee

 A
dd

O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

N
o

Li
m

ite
d

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

O

n

D
at

ab
as

e
R

ep
or

ts
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r c
re

at
in

g
da

ta
ba

se
 re

po
rts

?
N

o
N

o
Li

m
ite

d
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Li

m
ite

d
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

D
is

cu
ss

io
n

/ F
or

um
D

oe
s

th
e

sy
st

em
 h

av
e

a
m

es
sa

ge
 b

oa
rd

?
Fr

ee
 A

dd
 O

n
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s

D
oc

um
en

t M
an

ag
em

en
t

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

fo
r m

an
ag

in
g

of
fli

ne
 d

oc
um

en
t s

to
ra

ge
 a

nd
 v

er
si

on
in

g?

N
o

Li
m

ite
d

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Ye
s

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

O

n

Ev
en

ts
 C

al
en

da
r

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

fo
r t

ra
ck

in
g

ev
en

ts
 a

nd
 d

is
pl

ay
in

g
ev

en
ts

 c
al

en
da

rs
?

Ye
s

Fr
ee

 A
dd

O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

Ev
en

ts
 M

an
ag

em
en

t
D

oe
s

th
e

sy
st

em
 h

av
e

a
w

ay
 to

 c
re

at
e

ev
en

ts
 a

nd

al
lo

w
 u

se
rs

 to
 s

ig
n

up
 fo

r t
ho

se
 e

ve
nt

s.

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

Ex
pe

ns
e

R
ep

or
ts

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

fo
r t

ra
ck

in
g

em
pl

oy
ee

 e
xp

en
se

 re
po

rts
?

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

FA
Q

 M
an

ag
em

en
t

Fr
ee

146

A Appendix

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

to
 o

rg
an

iz
e

fre
qu

en
tly

 a
sk

ed
 q

ue
st

io
ns

?
N

o
Ye

s
Fr

ee
 A

dd
 O

n
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s

Fi
le

 D
is

tr
ib

ut
io

n
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r d
is

tri
bu

tin
g

fil
es

 in
cl

ud
in

g
pr

iv
ile

ge
s

fo
r w

ho
 is

 a
llo

w
ed

 to

vi
ew

/d
ow

nl
oa

d
th

os
e

fil
es

?

Ye
s

Fr
ee

 A
dd

O

n
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

G
ra

ph
s

an
d

C
ha

rt
s

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

th
at

 w
ill

 a
llo

w

th
e

us
er

 to
 g

en
er

at
e

gr
ap

hs
 a

nd
 c

ha
rts

 b
as

ed
 u

po
n

so
m

e
da

ta
 s

et
 (S

Q
L,

 te
xt

 fi
le

, x
m

l f
ile

, e
tc

)?

N
o

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

G
ro

up
w

ar
e

D
oe

s
th

e
sy

st
em

 h
av

e
em

ai
l a

nd
 c

al
en

da
rin

g
(g

ro
up

sc

he
du

lin
g)

 a
pp

lic
at

io
ns

?
N

o
Fr

ee
 A

dd

O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
N

o

G
ue

st
 B

oo
k

D
oe

s
th

e
sy

st
em

 h
av

e
a

gu
es

t b
oo

k
or

 g
ra

ffi
ti

ap
pl

ic
at

io
n?

N

o
Fr

ee
 A

dd

O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

H
el

p
D

es
k

/ B
ug

 R
ep

or
tin

g
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r t
ro

ub
le

tic

ke
tin

g
or

 b
ug

 re
po

rti
ng

?
N

o
Fr

ee
 A

dd

O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
N

o

H
TT

P
Pr

ox
y

D
oe

s
th

e
sy

st
em

 h
av

e
a

m
ec

ha
ni

sm
 to

 p
ro

xy
 o

r
m

irr
or

 H
TM

L
an

d
ot

he
r c

on
te

nt
 a

nd
 a

pp
lic

at
io

ns
 fr

om

ot
he

r w
eb

 s
er

ve
rs

?

Li
m

ite
d

N
o

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

N
o

N
o

Ye
s

In
/O

ut
 B

oa
rd

An
 in

tra
ne

t a
pp

lic
at

io
n

th
at

 a
llo

w
s

st
af

f t
o

po
st

 th
ei

r
st

at
us

. I
n

th
e

bu
ild

in
g.

 O
ut

 fo
r t

he
 d

ay
, b

e
ba

ck

to
m

m
or

ro
w

. E
tc

.

N
o

N
o

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

N
o

Jo
b

Po
st

in
gs

D
oe

s
th

e
sy

st
em

 h
av

e
a

m
ec

ha
ni

sm
 fo

r p
os

tin
g

jo
b

lis
tin

gs
?

N
o

Fr
ee

 A
dd

O

n
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
N

o
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

Li
nk

 M
an

ag
em

en
t

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

to
 m

an
ag

e
lin

ks
?

N
o

Fr
ee

 A
dd

O

n
Ye

s
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Ye
s

M
ai

l F
or

m

D
oe

s
th

e
C

M
S

ha
ve

 a
n

ap
pl

ic
at

io
n

fo
r c

re
at

in
g

cu
st

om
iz

ab
le

 'c
on

ta
ct

 u
s'

 ty
pe

 fo
rm

s?

N
o

Fr
ee

 A
dd

O

n
Ye

s
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

N
o

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

M
at

rix
D

oe
s

th
e

sy
st

em
 h

av
e

a
m

at
rix

 a
pp

lic
at

io
n

si
m

ila
r t

o
w

ha
t y

ou
 s

ee
 h

er
e

on
 C

M
S

M
at

rix
?

N
o

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

M
y

Pa
ge

 /
D

as
hb

oa
rd

D
oe

s
th

e
C

M
S

ha
ve

 a
 d

as
hb

oa
rd

 a
pp

lic
at

io
n

(s
om

et
im

es
 c

al
le

d
a

po
rta

l)?
 (S

ee
 m

y.
ya

ho
o.

co
m

 fo
r

an
 e

xa
m

pl
e.

)

N
o

Fr
ee

 A
dd

O

n
Li

m
ite

d
N

o
N

o
Fr

ee
 A

dd
 O

n
Li

m
ite

d
N

o
Fr

ee
 A

dd
 O

n
Ye

s
Ye

s

N
ew

sl
et

te
r

D
oe

s
th

e
sy

st
em

 h
av

e
th

e
ab

ili
ty

 to
 a

llo
w

 u
se

rs
 to

ad

d/
de

le
te

 th
em

se
lv

es
 to

/fr
om

 a
 li

st
 s

o
th

at
 th

ey
 c

an

be
 s

en
t e

m
ai

l f
ro

m
 th

e
sy

st
em

 o
n

va
rio

us
 to

pi
cs

?

Fr
ee

 A
dd

O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

Ye
s

Fr
ee

 A
dd

 O
n

Ph
ot

o
G

al
le

ry
Fr

ee
 A

dd

Fr
ee

Fr

ee
 A

dd

147

A.5 CMS feature comparison
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r d
is

pl
ay

in
g

a
th

um
bn

ai
l /

 im
ag

e
re

po
si

to
ry

?
Ye

s
O

n
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
O

n

Po
lls

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

fo
r c

on
du

ct
in

g
si

m
pl

e
si

ng
le

 q
ue

st
io

n
po

lls
?

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s

Pr
od

uc
t M

an
ag

em
en

t
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r d
is

pl
ay

in
g

or
ga

ni
ze

d
pr

od
uc

t i
nf

or
m

at
io

n?

N
o

Fr
ee

 A
dd

O

n
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

Pr
oj

ec
t T

ra
ck

in
g

D
oe

s
th

e
sy

st
em

 h
av

e
an

 a
pp

lic
at

io
n

fo
r m

an
ag

in
g

pr
oj

ec
t t

as
ks

?
N

o
Fr

ee
 A

dd

O
n

N
o

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd

O
n

Se
ar

ch
 E

ng
in

e
D

oe
s

th
e

sy
st

em
 h

av
e

an
 in

te
gr

at
ed

 s
ea

rc
h

en
gi

ne

th
at

 c
an

 in
de

x
th

e
m

an
ag

ed
 c

on
te

nt
 a

nd
 a

llo
w

 th
e

us
er

 to
 s

ea
rc

h
th

e
in

de
xe

d
co

nt
en

t?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Si
te

 M
ap

C
an

 th
e

sy
st

em
 g

en
er

at
e

a
tre

e
sh

ow
in

g
al

l o
f t

he

pa
ge

s
in

 th
e

sy
st

em
 d

yn
am

ic
al

ly
 s

o
it

do
es

n\
't

ha
ve

 to

be
 m

ai
nt

ai
ne

d
se

pe
ra

te
ly

 b
y

th
e

co
nt

en
t m

an
ag

er
s?

Fr
ee

 A
dd

O

n
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s
Fr

ee

Ad
d

O
n

Ye
s

Fr
ee

 A
dd

 O
n

St
oc

k
Q

uo
te

s
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r d
is

pl
ay

in
g

st
oc

k
tic

ke
r i

nf
or

m
at

io
n?

Fr
ee

 A
dd

O

n
N

o
N

o
N

o
Fr

ee
 A

dd
 O

n

Su
rv

ey
s

D
oe

s
th

e
C

M
S

ha
ve

 a
n

ap
pl

ic
at

io
n

fo
r c

on
du

ct
in

g
co

m
pl

ex
 m

ul
ti-

qu
es

tio
n

su
rv

ey
s?

N

o
Fr

ee
 A

dd

O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

C
os

ts

Ex
tra

N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
N

o

Sy
nd

ic
at

ed
 C

on
te

nt
 (R

SS
)

D
oe

s
th

e
C

M
S

ha
ve

 a
n

ap
pl

ic
at

io
n

fo
r r

et
rie

vi
ng

 a
nd

di

sp
la

yi
ng

 R
D

F/
R

S
S/

XM
L

sy
nd

ic
at

ed
 c

on
te

nt
?

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Fr
ee

Ad

d
O

n
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s

Te
st

s
/ Q

ui
zz

es
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r
ad

m
in

is
te

rin
g

te
st

s
an

d
qu

iz
ze

s?

N
o

Fr
ee

 A
dd

O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Fr

ee

Ad
d

O
n

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

Ti
m

e
Tr

ac
ki

ng
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r t
ra

ck
in

g
em

pl
oy

ee
 ti

m
e

fo
r p

ay
ro

ll
or

 b
illi

ng
 p

ur
po

se
s?

N

o
N

o
N

o
N

o
N

o
Fr

ee
 A

dd
 O

n
N

o
N

o
Fr

ee
 A

dd
 O

n
N

o
N

o

U
se

r C
on

tr
ib

ut
io

ns
D

oe
s

th
e

C
M

S
ha

ve
 a

 s
ys

te
m

 fo
r a

llo
w

in
g

a
us

er

co
m

m
un

ity
 to

 c
on

tri
bu

te
 s

to
rie

s
an

d
ot

he
r c

on
te

nt
 to

th

e
si

te
?

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

N
o

Ye
s

Fr
ee

 A
dd

 O
n

Ye
s

W
ea

th
er

D
oe

s
th

e
sy

st
em

 h
av

e
a

w
ea

th
er

 in
fo

rm
at

io
n

sy
st

em
?

N
o

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

W
eb

 S
er

vi
ce

s
Fr

on
t E

nd
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

pp
lic

at
io

n
fo

r d
ire

ct
ly

in

te
rfa

ci
ng

 w
ith

 a
rb

itr
ar

y
w

eb
 s

er
vi

ce
s

su
ch

 a
s

th
e

G
oo

gl
e

A
PI

 a
nd

 th
e

va
rio

us
 a

va
ila

bl
e

m
et

ho
ds

 fr
om

X-

M
et

ho
ds

, a
nd

 th
en

 c
re

at
in

g
a

te
m

pl
at

ed
 u

se
r

in
te

rfa
ce

 w
ith

ou
t c

od
in

g?

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

Fr
ee

 A
dd

 O
n

Ye
s

Fr
ee

 A
dd

O

n

C
om

m
er

ce
A

ria
dn

e
D

ru
pa

l
eZ

 p
ub

lis
h

Jo
om

la
!

M
am

bo
ph

pC
M

S
Pl

on
e

Sp
in

Pi
ke

C

om
m

er
ce

TY
PO

3
Xa

ra
ya

Xo
op

s

148

A Appendix

A
ffi

lia
te

 T
ra

ck
in

g
D

oe
s

th
e

sy
st

em
 h

av
e

an
 a

ffi
lia

te
 tr

ac
ki

ng
 o

r r
ef

er
ra

ls

sy
st

em
 fo

r t
ra

ck
in

g
pa

rtn
er

 s
ite

s
th

at
 li

nk
 in

 to
 th

e
si

te
?

N
o

Fr
ee

 A
dd

O

n
N

o
Fr

ee
 A

dd
 O

n
N

o
N

o
N

o
N

o
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
Ye

s

In
ve

nt
or

y
M

an
ag

em
en

t
D

oe
s

th
e

sy
st

em
 p

ro
vi

de
 th

e
si

te
 o

w
ne

r a
 w

ay
 to

m

an
ag

e
in

ve
nt

or
y

le
ve

ls
 (q

ua
nt

iti
es

 o
f p

ro
du

ct
 o

n
ha

nd
)?

Fr
ee

 A
dd

O

n
N

o
Fr

ee
 A

dd
 O

n
N

o
N

o
N

o
Fr

ee
 A

dd
 O

n
N

o

Pl
ug

ga
bl

e
Pa

ym
en

ts
D

oe
s

th
e

sy
st

em
 a

llo
w

 th
e

si
te

 o
w

ne
r t

o
pl

ug
 in

 n
ew

pa

ym
en

t g
at

ew
ay

s
so

 th
ey

 m
ay

 u
se

 w
ha

te
ve

r
pa

ym
en

t p
ro

ce
ss

in
g

m
ec

ha
ni

sm
 (P

ay
Pa

l,
Pa

yF
lo

w
Pr

o,
 2

ch
ec

ko
ut

, i
Tr

an
sa

ct
, A

ut
ho

riz
e.

ne
t,

et
c)

th

ey
 c

ho
os

e?

Fr
ee

 A
dd

O

n
Ye

s
Fr

ee
 A

dd
 O

n
N

o
N

o
Fr

ee

Ad
d

O
n

Fr
ee

 A
dd

 O
n

Fr
ee

 A
dd

 O
n

Pl
ug

ga
bl

e
Sh

ip
pi

ng
D

oe
s

th
e

sy
st

em
 a

llo
w

 th
e

si
te

 o
w

ne
r t

o
pl

ug
 in

 th
ei

r
ow

n
sh

ip
pi

ng
 c

al
cu

la
to

r s
o

th
at

 th
ey

 c
an

 c
ha

rg
e

ba
se

d
up

on
 th

ei
r n

ee
ds

 (w
ei

gh
t,

pr
ic

e,
 U

PS
, U

S
PS

,
Fe

dE
x,

 e
tc

)?

Fr
ee

 A
dd

O

n
Ye

s
Fr

ee
 A

dd
 O

n
N

o
N

o
Fr

ee

Ad
d

O
n

Fr
ee

 A
dd

 O
n

N
o

Pl
ug

ga
bl

e
Ta

x
D

oe
s

th
e

sy
st

em
 a

llo
w

 th
e

si
te

 o
w

ne
r t

o
pl

ug
 in

 n
ew

ta

x
ca

lc
ul

at
or

s?

N
o

Ye
s

Fr
ee

 A
dd

 O
n

N
o

N
o

Fr
ee

Ad

d
O

n
N

o
N

o

Po
in

t o
f S

al
e

D
oe

s
th

e
sy

st
em

 ti
e

in
to

 (o
r h

av
e

bu
ilt

 in
) a

 p
oi

nt
 o

f
sa

le
 s

ys
te

m
 to

 e
na

bl
e

si
te

 o
w

ne
rs

 to
 ru

n
a

br
ic

k
an

d
m

or
ta

r s
to

re
 fr

om
 th

e
sa

m
e

in
ve

nt
or

y?

N
o

N
o

Fr
ee

 A
dd

 O
n

N
o

N
o

N
o

N
o

Fr
ee

 A
dd

 O
n

Sh
op

pi
ng

 C
ar

t
D

oe
s

th
e

sy
st

em
 h

av
e

a
m

ec
ha

ni
sm

 fo
r a

llo
w

in
g

th
e

us
er

 to
 c

re
at

e
a

lis
t o

f a
dh

oc
 it

em
s

to
 p

ur
ch

as
e,

 a
nd

th

en
 p

ur
ch

as
e

al
l o

f t
he

m
 a

t o
nc

e?

N
o

Fr
ee

 A
dd

O

n
Ye

s
Fr

ee
 A

dd
 O

n
Fr

ee
 A

dd
 O

n
N

o
Fr

ee

Ad
d

O
n

Ye
s

Fr
ee

 A
dd

 O
n

Li
m

ite
d

Fr
ee

 A
dd

O

n

Su
bs

cr
ip

tio
ns

D
oe

s
th

e
sy

st
em

 h
av

e
a

w
ay

 m
an

ag
e

tim
ed

su

bs
cr

ip
tio

ns
 th

at
 a

re
 ti

ed
 in

to
 th

e
co

m
m

er
ce

fu

nc
tio

n?
 T

hi
s

re
qu

ire
s

re
cu

rri
ng

 b
ill

in
g,

 b
ill

in
g

ca
nc

el
la

tio
n,

 e
tc

.

Fr
ee

 A
dd

O

n
N

o
Fr

ee
 A

dd
 O

n
N

o
N

o
N

o
N

o
Li

m
ite

d

W
is

h
Li

st
s

D
oe

s
th

e
sy

st
em

 a
llo

w
 u

se
rs

 to
 c

re
at

e
w

is
h

lis
ts

?
N

o
Ye

s
Fr

ee
 A

dd
 O

n
N

o
N

o
N

o
Fr

ee
 A

dd
 O

n
N

o

149

150

B About the Author

Ing. Hannes Dorn
born 21st of November, 1972 in Amstetten, Austria
living and working in Vienna and Klagenfurt

B.1 Education

June 1992 Matura, HTL St. Pölten, Austria
Secondary college for information technology and organization.
Degree with excellent success

March 2008 Master’s degree in Business Informatics
Technical University of Vienna, Austria

Master’s Thesis:
“oPage - Framework for Web based Content Management Systems” carried out at
the Technical University of Vienna, Distributed Systems Group

B.2 Professional career

1992 - 1999 SPARDAT Sparkassen Datendienst, Vienna
IT services for Austrias mutual savings banks
Software engineer and manager of Intranet projects.

1999 - 2000 VIANET AG, Vienna
Internet Service Provider
System maintenance and Web development.

2000 - 2002 IBIT GmbH, Vienna
Web agency, software development and system maintenance
Technical director, Web development.

October 2002 EDV Dienstleistungen Dorn, Vienna
http://edv.dorn.cc

Self-employed IT consultant and software engineer for system maintenance, software
and Web development.
Building Web sites using the oPage framework.

151

http://edv.dorn.cc

This master thesis has been produced using LATEX.

	Titlepage
	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Internet Services
	Web Terminology
	Motivation
	Problem Definition
	Organisation of this thesis

	Web Content Management Systems
	Content Management
	What is a WCMS
	WCMS roles
	WCMS functions
	Web Content management systems
	Goals for oPage
	Summary

	oPage Framework
	Structure
	Website
	oPage Core
	The factory class
	The template engine
	CContent, a generic content module
	CApp
	CModul
	CPage
	CWebpage
	CControl
	CNavigation
	CMail
	CForm
	CPager
	Administration
	Advanced topics
	Summary

	Evaluation
	Operating system
	Installation
	Web compatibility
	Search engine optimization
	User interface
	User management
	Security
	Software architecture
	Application programming interface
	Performance
	Lessons learned

	Future Work
	Installation
	Template Engine
	Multilanguage resources
	Automatic checking of external links
	Access statistics
	Plugin System
	Workflow
	Backend homepage
	Summery

	Conclusion
	References
	List of Tables
	List of Figures
	Listings
	Appendix
	PHP
	Coding Standards
	Directory structure
	Administration interface templates
	CMS feature comparison

	About the Author
	Education
	Professional career

